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ABSTRACT 

 
Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that 

are used to treat patients suffering from conditions characterized by elevated 

intracranial pressure, such as hydrocephalus. In cases of shunt failure or 

malfunction, patients are often required to endure one or more revision surgeries 

to replace all or part of the shunt. One of the primary causes of CSF shunt failure 

is obstruction of the ventricular catheter, a component of the shunt system 

implanted directly into the brain's ventricular system. This work aims to improve 

the design of ventricular catheters in order to reduce the incidence of catheter 

obstruction and thereby reduce overall shunt failure rates. 

Modern CSF shunts are the result of six decades of neurosurgical progress; 

however, in spite of revolutionary advances in engineering, the ventricular catheter 

remains largely unchanged in its functionality and performance from its original 

design. A thorough review of the history of ventricular catheter design, and the 

contemporary efforts to improve it, have given valuable insight into the challenges 

still remaining. One of the challenges is to better understand shunt flow in order to 

improve the flow performance of ventricular catheters. To characterize CSF flow 

through catheters, this work integrated computational fluid dynamics (CFD) 

modelling with experimental validation.  

A fully-parametrized, 3-dimensional CFD catheter model was developed 

that allowed for exploration of the geometric design features key to the catheter’s 

fluid dynamics. The model was validated using bench tests and advanced fluid 

imaging techniques, including positron emission particle tracking (PEPT). Once 

validated, the model served as a basis for automated, iterative parametric studies 

to be conducted. This involved creating a coupled framework between the CFD 

simulations and a parametric analysis toolkit. Sensitivity analyses and optimization 

studies were performed with the objective of improving catheter flow patterns. By 

simulating thousands of possible geometric catheter designs, much insight was 

gathered that can provide practical guidelines for producing optimal flow through 

ventricular catheters. Ultimately, those insights can lead to better quality of life for 

patients who require shunts, by reducing ventricular catheter obstruction rates and 

the need for revision surgeries. 
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CHAPTER 1: 

INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 
 

The objective of this research is to minimize the potential for the obstruction 

in ventricular catheters through the characterization and optimization of flow 

through these catheters.  Ventricular catheters are a component of cerebrospinal 

fluid (CSF) shunt systems, fully implantable medical devices that are used to treat 

patients suffering from conditions characterized by elevated intracranial pressure, 

such as hydrocephalus. These catheters are surgically inserted into the ventricular 

cavities of the brain and therefore operate in a dynamic and complex environment. 

While in many cases, ventricular catheters and shunt systems save lives and 

greatly improve the quality of life of patients, relatively high rates of shunt 

malfunction often require patients to undergo repeated invasive surgeries.  

In order to improve the performance of these catheters, this research 

identifies possible design modifications to reduce the high rates of shunt failure. 

Specifically, the fluid dynamics of CSF flow through the catheters is explored and 

characterized in an effort to create more favorable flow conditions which may make 

malfunctions less prevalent. The physics of CSF flow in the human brain and 

through shunt systems is dynamic and is affected by many variables. Though this 

flow is not easily replicated outside the human body, the following work simplifies 

certain aspects of this complex flow problem to take advantage of fluid imaging 

techniques and computational simulations for the purposes of design evaluation 

and optimization.  

 

1.2 Background: Hydrocephalus 
 
1.2.1 What is Hydrocephalus? 
 

Hydrocephalus is a condition primarily characterized by intracranial 

hypertension due to the excessive accumulation of cerebrospinal fluid (CSF) in the 

cavities surrounding the brain (collectively called the ventricular system). Widening 

of the ventricles due to this increased fluid volume results in potentially harmful 

pressure on the brain tissues [1]. Hydrocephalus has historically been and 

continues to be one of the leading causes for invasive neurosurgery in modern 

medicine. 
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Congenital hydrocephalus, resulting from inherited genetic abnormalities or 

developmental disorders, is estimated to be present in 3-5 per 1000 live births in 

developed countries [2], and 1-2 per 1000 live births in the United States [1]. The 

economic impact of this condition is also alarmingly high, with annual  

US hospital charges of $1.1 to $2 billion being reported for the treatment of 

pediatric hydrocephalus alone [3, 4]. Therefore, finding safe and effective 

treatments for this condition has been a major goal of neurological research for 

many decades. 

Normally, CSF is produced continuously by the ependymal cells in the 

brain’s choroid plexus, and is then reabsorbed by the body’s vascular system via 

arachnoid granulations which act as one-way pressure differential valves. Before 

reabsorption into the bloodstream, CSF flows through the narrow passages of the 

four ventricles, bathing the brain tissue and spinal cord. It functions in shielding the 

brain from shocks by keeping it buoyant, in delivering nutrients, and in removing 

waste from the area surrounding the brain. It also compensates for changes in 

intracranial blood volume by flowing between the cranium and spine.  

Approximately 500 mL of CSF is produced and absorbed each day by a 

healthy individual, with only about 100-160 mL present in the ventricular system at 

one time. Thus, in a healthy individual the intracranial pressure is maintained at a 

steady level (approximately 16-24 mmHg, while the individual is sitting up) [5]. For 

individuals suffering from hydrocephalus, this steady level of CSF is no longer 

maintained by the body. Hydrocephalus may be present at birth (congenital) or 

may develop at a later stage of life (acquired), and thus can affect people of all 

ages. The condition can be classified as communicating, where CSF can still flow 

between the ventricles, or non-communicating, where CSF is blocked from flowing 

through one of the narrow passages connecting the ventricles. Aqueductal 

stenosis, a common cause for hydrocephalus, is of the latter type. Stroke, 

traumatic brain injury, infection, tumors, or complications from surgeries can also 

lead to other types of secondary hydrocephalus, such as hydrocephalus ex-vacuo 

and Normal Pressure Hydrocephalus (NPH), a condition affecting an estimated 

375,000 older Americans [1]. 

Hydrocephalus affects various individuals in different ways, resulting in 

some difficulties in correctly diagnosing this condition.  In infants, the most obvious 

symptom is a rapid increase in the circumference of the head due to the newly 

formed skull’s ability to expand to accommodate the buildup of CSF. Infants may 

also show signs of vomiting, sleepiness, irritability, downward deviation of the eyes 

(also called "sun setting"), and seizures. Additional symptoms may be experienced 

by children and adults suffering from hydrocephalus, including severe headaches 

and cognition/memory loss. However, these symptoms are not exclusive to 
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hydrocephalus. Especially in the elderly, NPH is often misdiagnosed since the 

symptoms may be mistaken for the onset of other diseases affecting older 

individuals such as Alzheimer’s disease, Parkinson's disease, and Creutzfeldt-

Jakob disease [1]. 

Once diagnosed with hydrocephalus, it is imperative that a patient receive 

the proper treatment in a timely manner. When left untreated, progressive 

hydrocephalus may be fatal. NPH has symptoms that worsen if left untreated, 

especially in older individuals. Children and adults who are diagnosed early and 

are properly treated have a very high survival rate; and, especially when 

treatments are coupled with rehabilitative therapies, these individuals may go on 

to lead normal lives with few limitations [1]. 

 

1.2.2 Hydrocephalus: Current Procedures and Surgical Techniques for 
Treatment 

 
The most common surgery performed to treat hydrocephalus is the insertion 

of a shunt into one of the brain’s fluid-filled ventricular cavities. A shunt is a 

mechanical device that diverts excess fluid from the brain to another part of the 

body where it can more readily be absorbed into the blood stream. Typically the 

flow is diverted to the peritoneum (abdominal cavity), but sometimes to the right 

atrium of the heart, pleural (lung) cavity, or other areas (see Figure 1.1). A shunt 

often relies on 3 main components to accomplish this diversion: a ventricular 

catheter, implanted into the patient’s brain; a differential pressure valve, which acts 

Figure 1.1 Diagram showing an implanted CSF shunt and indicating the location of the 
ventricular catheter within the brain.  
(Image attributed to Cancer Research UK. Licensed under CC BY-SA 4.0 via Wikimedia 
Commons.) 
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as a regulatory mechanism for the flow; and a distal catheter, which drains the 

diverted CSF to the desired area of the patient’s body.  

Surgical techniques not requiring the implantation of any mechanical device 

are relevant for a smaller percentage of cases, but generally have high rates of 

success. These techniques still pose the same risks as other neurosurgical 

operations, including intracranial bleeding and infection, but avoid the 

complications associated with shunts: most importantly, the need for revisions due 

to device failure. Endoscopic surgery has been employed successfully on a smaller 

scale, though it requires neurosurgeons with highly specialized training. In 

neuroendoscopy, a surgeon utilizes an endoscope: a tube-like device which 

includes an integrated light source, to look inside a body cavity or organ. The 

endoscope is inserted through a small burr hole made in the skull, and then 

depending on the procedure, a probe may also be inserted through the working 

channel of the endoscope and used to fenestrate (or perforate) the membrane 

blocking the flow of CSF [6].  

Endoscopic third ventriculostomy (ETV) is a surgical procedure aimed at 

creating a new communication (i.e. connection of flow) between the ventricular 

system and the subarachnoid space. This is achieved through fenestration of the 

third ventricle floor. ETV has been performed most successfully for cases of 

hydrocephalus in which the normal mechanism for CSF absorption still exists at 

the arachnoid granulations (for instance, cases caused by aqueductal stenosis, or 

compression of the aqueduct or fourth ventricle by tumors) [6]. Success of ETV is 

dependent on many factors, including the age of the patient and the type of 

hydrocephalus.  

In cases of multiloculated (or multicompartmental) hydrocephalus, 

endoscopic fenestration may be performed in order to reduce the number and/or 

complexity of the shunts needed for successful treatment. This can be greatly 

advantageous since the placement of multiple ventricular catheters increases the 

probability of catheter malposition and thus, the need for surgical revision. 

Endoscopy can be a versatile tool used in various procedures to consolidate the 

number of catheters, including fenestration of the septum pellucidum and 

intraventricular septations, foraminoplasty, aqueductoplasty, and ETV [7].  

Treatment for hydrocephalus must, of course, first begin with a correct 

diagnosis. As mentioned previously, this is often difficult to achieve. Correct 

diagnostic tools must be selected based on an individual’s age, symptoms, and 

known/suspected abnormalities in the brain or spinal cord. A physician may use 

cranial imaging techniques after performing a clinical neurological evaluation, 

which often includes a spinal tap to measure CSF pressure. These techniques may 

include a combination of ultrasonography, CT, and MRI [1].   



www.manaraa.com

 

5 
 

1.3 Background: Cerebrospinal Fluid Shunts 
 
1.3.1 Complications and Causes for Shunt Failure 
 

Though established as the standard procedure for most hydrocephalus 

treatments, the cerebral shunt system still has many inherent flaws. Complications 

arising after implantation are unfortunately common, requiring close monitoring 

and regular medical follow-ups of patients after the initial shunt placement. 

Complications requiring a subsequent surgery to remove or alter the shunt fall 

under two main categories: those arising from changes in the patient’s condition 

and those caused by device malfunction. Both categories constitute a failure of the 

shunt system to perform its given task: maintaining a steady, healthy level of CSF 

in the patient’s ventricular system. Although shunts serve as the default treatment 

for hydrocephalus, shunt failure rates are still alarmingly high. Well over 50 percent 

of pediatric shunts require revision over the course of their lifetime, most within the 

first or second year after the original surgical intervention [8-10].  

Changes in a patient’s condition during the course of hydrocephalus may 

result in underdrainage, overdrainage, infection due to faulty placement, or the 

need to adjust the shunt tube length. Overdraining can lead to ventricular collapse, 

during which blood vessels may be torn, causing the patient to experience severe 

headaches [1]. In a randomized study performed on 344 hydrocephalic children 

and published in 1998 [10], shunt failure was observed in 150 patients (43.6% of 

the test group) and was categorized by the cause of failure. Of those 150 cases, 

108 (31.4%) were attributed to shunt obstruction, 28 (8.1%) to infection, 12 (3.5%) 

to overdrainage, and 2 (0.6%) to loculated ventricles. Post shunt implantation, 61% 

of the group were observed to be shunt failure-free after 1 year and 47% after 2 

years. The median shunt failure-free duration for the group was 656 days, or just 

under 2 years. 

Another study [11] performed a multivariate analysis on prospectively 

collected shunt failure data. The multivariate model allowed for an analysis of the 

effects of ventricular size, catheter location, catheter environment, and the cause 

of the hydrocephalus. Three-quarters of the model variability was accounted for by 

the ventricular catheter location and its environment, pointing to these as the most 

significant risk factors. Catheters placed in the occipital horn had a lower hazard 

ratio than those placed in the frontal horn. A lower hazard ratio was also observed 

when the ventricles were expanded, allowing the catheter to be completely 

surrounded by CSF. Therefore, catheter placement is a critical factor for shunt 

success. 

 



www.manaraa.com

 

6 
 

1.3.2 Ventricular Catheters and Shunt Obstruction 
 

This work focuses specifically on the ventricular catheter, a thin, flexible 

tube made of an extruded silicone (PDMS) based polymer. Most ventricular 

catheters feature an internal diameter of approximately 1.0 – 1.6 mm and are 

closed off at one end with a rounded tip. A set of small holes, generally each 

between 0.285 – 0.975 mm in diameter, near the catheter tip serve as inlets for 

CSF to enter the shunt on the ventricular end (see Figure 1.2). In many cases, 

these small holes often become occluded by an accumulation of cells or floating 

debris, or by fronds of choroid plexus, a CSF-producing structure within the 

ventricles [12-15]. At best, these obstructions can cause CSF to be drained less 

effectively, or at worst they can completely block CSF flow, leading to shunt failure. 

As shown in the randomized study mentioned in the previous section [10], 

31.4% (108 out of 344) of the total observed cases failed due to shunt obstruction, 

which equates to 72% (108 out of 150) of the total cases of shunt failure. Of those 

cases, one-third (36 out of 108) were due specifically to ventricular catheter 

obstruction. The study featured the use of 3 different valves in the implanted shunt 

systems. The shunt systems featuring the Orbis-Sigma valve by Cordis, a flow-

limiting device, experienced the least number of failures due to ventricular catheter 

obstruction, but a higher number of valve failures. This may suggest that the action 

of the valve improved flow through the catheter perforations, but that the site of 

obstruction may have simply moved downstream toward the valve itself [16]. 

Catheter placement weighs heavily on the probability for an obstruction to 

occur, as the proximity of the catheter inlet holes to the choroid plexus is an 

important factor. Given that the average length of a catheter’s inlet segment is 

Figure 1.2 Photograph showing 3 different styles of catheter tips with varying designs 
of inlet hole configurations. 
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between 1.6 - 2 cm and that the average intraventricular distance available for 

catheter placement in the frontal horn is less than 1.6 cm [17], most catheters will 

likely be placed only a troublingly small distance away from the invasive fronds of 

the choroid plexus.  

Surgical placement techniques have improved over the years, reflecting  the 

increased accuracy of added technological intervention to assist the widely used 

freehand technique [18-21]. These methods all aim to assist the surgeon in placing 

the catheter in a favorable position such that it is surrounded by CSF and is not in 

contact with tissues, to the degree possible. In cases of slit-like ventricles, this 

becomes nearly impossible as the ventricles have very little fluid filled volume. 

When an obstruction is suspected, there are some methods, such as shunt taps, 

to test for patency and attempt to solve the issue. Although several methods of 

recanalization or cannulation of the catheter have been developed over the years 

[22-24], almost all cases encountering catheter obstruction require revision 

surgery [25]. 

 

1.4 Research Approach 
    

Though ventricular catheter obstruction is a complex issue involving many 

factors, including catheter placement and individual patient CSF composition, one 

of the few factors that may be directly influenced by researchers aiming to improve 

shunt success rates is the catheter design. Modifications to design can change 

flow parameters in such a way as to prevent, or significantly reduce, the chance of 

obstruction-induced shunt failure. Catheter design is therefore the focus of this 

research. It is systematically broken down into its constituent parameters and 

examined for areas of possible improvement with regard to the fluid dynamics of 

the catheter. 

A significant part of this work deals with modeling and characterizing the 

flow through a catheter within the ventricular space. Certain assumptions are made 

in order to allow for a practical computational model to be created, evaluated, and 

then modified for design exploration of the ventricular catheter. An experimental 

fluid imaging approach complements and aids in validating the computational 

models. In addition, by taking advantage of high-performance computing 

resources and an automated, iterative framework, the model is used as a basis for 

geometric optimization. These characterizations and fluid dynamic simulations will 

serve to inform future efforts of catheter design. 

  



www.manaraa.com

 

8 
 

CHAPTER 2: 

LITERATURE REVIEW 

2.1 Overview 

 
Prior to performing computational analyses or experimental tests on 

ventricular catheter design, it was critical to conduct a thorough review of the 

existing literature on the subject. Since the topic of this research is interdisciplinary, 

requiring knowledge from several fields including neurosurgery, fluid dynamics, 

and computational sciences, the literature was gathered from multiple databases. 

Most of the material on shunts, and more specifically ventricular catheters, was 

located by conducting key word searches in PubMed, a free online search engine 

provided by the United States National Library of Medicine. This database 

consolidates scientific publications in the fields of life sciences and biomedical 

applications, making it a powerful tool for such preliminary research. 

Understanding the history of ventricular catheter design, within the context 

of shunt evolution, was an important first step in the literature review process. In 

examining the beginnings of shunt engineering, it was clear that the modern 

ventricular catheter of the 1950s and 60s was a great improvement over the 

iterations of previous decades. Advancements throughout the past 50 years in the 

fields of materials science and biomedical engineering have since improved these 

catheters even further, but several major challenges still exist. One of these 

challenges remains the high rate of catheter obstruction among patients. Though 

many innovations aimed at reducing obstruction rates have been attempted over 

the years, none have been proven clinically successful. 

One of the suggested improvements to catheter design has been to modify 

the configuration of inlet holes at the tip of the catheter in order to influence the 

fluid dynamics of CSF flow through the catheter. More specifically, several 

computational studies have been performed to demonstrate the effect of changing 

catheter hole configurations on the distribution of inlet flow rates along the length 

of the perforated segment. Most current designs feature a configuration in which a 

majority of the flow is concentrated in the hole sets closest to the catheter outlet. 

This design potentially favors failure-inducing obstructions. Therefore, the goal of 

previous studies in this field has been to provide better flow uniformity among the 

holes, to statistically prevent such an occurrence. This work also focuses on this 

goal, this time through systematic parametric optimization. 
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2.2 Ventricular Catheter Development: Past, Present, and 
Future 

 
Disclaimer  

 

This chapter section contains material that has been published in the 

Journal of Neurosurgery, under the article title "Ventricular catheter development: 

past, present, and future" [26]. Authors are Sofy H. Weisenberg, Stephanie C. 

TerMaath, Chad E. Seaver, and James A. Killeffer. 

Permission has been granted by the authors and the Journal of 

Neurosurgery to republish the article in this academic thesis. Images and figures 

have been removed from the article published here, so as not to infringe on any 

copyright restrictions. The article’s formatting has been modified to reflect the 

formatting of the remainder of the thesis. References for the article are included at 

the end of the thesis, as part of the general references section, so reference 

numbers are not as they appear in the original article.  
  

2.2.1 Introduction 
 

The most common treatment for both congenital and acquired 

hydrocephalus is the placement of a CSF shunt that diverts excess CSF from the 

ventricles to a part of the body in which it can be readily absorbed. While effective, 

newly placed shunts require on average 2 to 4 revision surgeries within the first 10 

years after implantation [27, 28]. A large percentage of these revisions occur within 

the 1st year after placement, and most [28] are required within the first 2 years [29-

31]. Ventricular catheter (VC) obstruction is the cause of nearly one-third of shunt 

failures, making it the most common reason for revision surgery [9, 31, 32]. 

Reducing shunt failure rates remains a major goal of shunt development, 

and improving VC performance would constitute a major step in that direction. 

Although several reviews have addressed the historical development of the shunt 

system as a whole [33-38], none to date have focused specifically on the VC. The 

object of this paper is to highlight the evolution of VCs in order to inform modern 

efforts at improving their effectiveness and reliability. 

 

2.2.2 Historical Overview of the Pre-Shunt Era 
 

Following Joseph Lister’s discoveries of the benefits of aseptic surgery in the 

1860s [39], methods involving cannulation of the ventricles became feasible and 

were attempted with varying degrees of success. The first sterile ventricular 
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puncture and external ventricular drain (EVD) insertion was performed in 1881 by 

Carl Wernicke [40]. External drainage via catheter-like devices, including 

horsehair, silk, and catgut wicks, became quite popular during the late 19th century 

[41]. However, in response to the risks posed by open drainage, attempts were 

made at the beginning of the 20th century to introduce mechanisms for internal 

CSF diversion [42]. Rerouting CSF from the ventricles to the subdural space was 

first accomplished in 1893 by Polish-Austrian surgeon Jan Mikulicz-Radecki, who 

inserted a mass of glass wool in the shape of a nail into the ventricles of a child 

[33, 43]. The child not only survived the procedure, but progression of the 

hydrocephalus in this case was effectively stopped. In the later part of the 1890s, 

gold tubes [44] and bundled strands of catgut [45] were also utilized for such 

“ventriculo-subdural” shunts. In 1903, Nicholas Senn performed the first recorded 

surgery using a perforated rubber tube, a crude predecessor of the modern VC, 

for subcutaneous drainage of CSF [42]. 

Most of these attempts ended badly, however, as patients developed fatal 

infections in addition to the already present mechanical obstruction. As early as 

1899, Adolf Dehler reported failure of an implanted gold tube due to “stoppage” 

[43]. These obstacles were not easily addressed by the medicine of the times, and 

a lack of effective antibiotics made it difficult to combat infections once they were 

identified. Nevertheless, surgeons practicing between 1908 and 1926 pursued 

many variations on this type of ventricular drainage including the use of glass tubes 

[46], split-ended silver tubes sewn to the pericranium [47], and even strips of 

omentum [48] (peritoneal tissue). In 1917 the neurological surgeon William Sharpe 

reported some success with the use of linen threads. Out of the 41 patients in 

Sharpe’s clinical study, 28 survived the procedure, and 22 of those showed marked 

improvement [49].  

Transplanted human or calf blood vessels were also implanted in various 

experiments and routed to the superior sagittal sinus, the jugular vein, or the 

common facial veins [43]. In this case, the valves in the veins were used to prevent 

backflow and direct the CSF out of the ventricles. These early decades of the 20th 

century also saw many other innovations in the treatment of hydrocephalus, 

including the first descriptions of Kocher’s point and Frazier’s point, the optimal 

cranial sites for catheter insertion that are still used today [50]. Although these early 

attempts created the foundation for the modern VC, the mid-20th century would 

see the first truly successful breakthroughs in its implementation.  
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2.2.3 Beginnings of Modern VC Development (1950-1980) 
 

Arne Torkildsen developed the most notable precursor to the modern 

internalized shunt. The Torkildsen shunt furthered the widespread use of implanted 

catheters during the 1940s and 1950s and, until the introduction of ventriculoatrial 

and ventriculoperitoneal shunts, was the most widely used means of CSF 

diversion. Introduced in 1939, it consisted of a rubber catheter used to cannulate 

the lateral ventricle and divert CSF to the cisterna magna in cases of 

noncommunicating hydrocephalus [51]. Because the Torkildsen shunt used a 

catheter to simply bridge 2 CSF-filled cavities, one favorable outcome was a very 

low incidence of catheter obstruction, which would come to be a serious issue in 

more complex shunt systems [13, 52, 53]. 

The advent of the modern, fully internalized shunt system is generally credited 

to the innovations of Frank Nulsen and Eugene Spitz. In their landmark 1951 

paper, they described the first successful attempt to treat hydrocephalus by means 

of a ventriculojugular shunt [54]. Although this paper is commonly credited with 

introducing the first 1-way flow-regulating device in a ventriculojugular shunt, it also 

describes the use of a specific 12-Fr soft rubber catheter inserted into the ventricle.  

In the meantime, the search for improved biomaterials continued. Franc D. 

Ingraham, a pioneer in pediatric neurosurgery, published a report in 1947 on the 

use of polyethylene as a new synthetic plastic for use in neurosurgery, suggesting 

that it could safely implanted into the tissues of the ventricular system [55]. Until 

this period, rubber tubing had been the standard material used in the Torkildsen 

and in the first Nulsen-Spitz shunt. Ingraham’s findings led to the choice of 

polyethylene as the material for a new generation of VCs.  Polyethylene, however, 

ultimately proved to be an unsatisfactory shunt material due to complications on 

the distal end, prompting a search for a better polymer [56]. This search led to 

polydimethylsiloxane (PDMS), or silicone rubber. Originally investigated as 

insulation material for electric motors and generators, PDMS was studied as a 

potential biomaterial throughout the 1940s due to its elasticity, thermal stability, 

and bio-inertness [57].  

In 1948, the first successful replacement of a male urethra by a narrow silicone 

catheter was accomplished [58], which led to the consideration of other clinical 

applications for silicone catheters. In 1957, Robert Pudenz reported on the 

successful use of a ventriculoatrial shunt made completely of silicone rubber [59]. 

The first silicone ventriculoperitoneal shunt was implanted in 1958 by Richard 

Ames, and 9 years later he reported promising results after performing 120 

additional procedures using silicone tubing [56]. This period marked an increase 

in the popularity of silicones, in part due to their prominent use in the Apollo space 
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program, and there was a significant transition to the almost exclusive use of 

medical-grade silicone (marketed as Silastic by the Dow-Corning Corporation) 

tubing in shunts, and specifically in VCs.  

With this successful shift in materials, engineers began to focus on how to solve 

the other problems inherent in shunts, particularly the prevention of VC obstruction. 

In his 1969 report [13] on the nature of VC hole occlusion, Salomon Hakim 

identified the main cause of obstruction as the invasion of choroid plexus via the 

catheter holes. Hakim, as well as other neurosurgeons, attempted to remedy this 

problem by modifying VC architecture. He introduced the “shepherd crook” or J-

shaped catheter, the tip of which was curved, with holes on the inside of the curve 

so as to distance them from invasive fronds of choroid plexus. Despite some early 

recorded success with this design, the experience with this particular catheter was 

disappointing overall, as elongated filaments of choroid plexus were still able to 

reach the catheter tip, obstructing the orifices [13, 28]. 

Another design was the Portnoy flanged catheter, introduced in 1971 [60]. 

Although seriously flawed, this design has seen relatively prolonged use in the 

neurosurgical community. The original design included several soft silicone rubber 

“umbrella” flanges positioned between the catheter holes; these were intended to 

protect the holes from brain parenchyma during insertion and from invasion of 

choroid plexus in the ventricles [61]. The flanges folded back over the holes during 

insertion and opened once the catheter tip was inside the ventricle. Although there 

was some early clinical evidence that this design reduced catheter occlusion, and 

therefore the need for shunt revision [61], this initial conclusion was later 

reexamined in a report that found evidence of a higher risk of proximal occlusion 

with long-term use of the flanged design. Moreover, the presence of the flanges 

was detrimental to those patients who did require revision, in that the flanges made 

catheter removal extremely dangerous by creating a risk of hemorrhage and 

permanent damage to surrounding brain tissue.      

 

2.2.4 Maturation of the Modern VC (1980-2005) 
 

Root cause investigations of ventricular catheter failures during the 1980s 

offered new insights into the mechanisms of shunt failure, particularly occlusion, 

and new countermeasures to circumvent problems were devised. In 1981 Go, et 

al. [29] histologically examined explanted catheters and identified dead cell-related 

obstructions that developed within 1 month of implant and choroid plexus invasion 

occurring within 3-6 months. In 1982, Sekhar, et al. [62] identified adsorbed tissue 

types including connective, inflammatory, granulomatous, glial, and choroid plexus 

as sources of occlusion. Characterization of obstructions and obstructed flow 
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through VCs were also studied via mathematical models [63] and shunt reservoir 

taps [64], and a number of investigations of materials and methods to circumvent 

this problem were subsequently undertaken. A 1982 design included a floating 

catheter that included an air cell integrated into the catheter. This was intended to 

provide some distance between the ventricle walls and the center of the ventricle 

in order to avoid significant choroid plexus contact and invasion [65]. Other 

patented approaches similarly attempted to protect the catheter holes from 

occlusion [66, 67]. 

Several modifications in material were also experimentally evaluated during 

this period. One of the most notable investigations included the testing of what 

eventually developed into Codman’s Bactiseal antimicrobial catheter.  In 1981, 

Bayston and Milner [68] evaluated the addition of various antibiotics to silicone 

catheters as a means of reducing of obstructions due to microorganism 

colonization, which was believed to develop from skin bacteria (e.g., 

Staphylococcus albus) proximal to catheter incision sites.  This study evaluated 

various antibiotics introduced at 4 different process steps of silicone vulcanization. 

Other patents [69, 70] issued in the 1980s used meshlike porous materials, formed 

by processes such as ion beam sputter-etching [69], to promote a more favorable 

biological response. A further investigation presented by Medow [71] also 

suggested that such a catheter material, which is permeable to most components 

of CSF, but not to prokaryotic or eukaryotic cells, could help prevent catheter 

obstruction. 

In contrast to the silicone (PDMS) catheters that were widely used during 

the 1980s, Wong, et al. [72], in a 1991 publication, evaluated construction of 

catheters from pHEMA (2-hydroxyethyl methacrylate), a semi-wettable polymer 

that is essentially a gel-like material in water.  pHEMA materials, which began to 

be studied for biocompatibility in the 1960s [73], reportedly hinder protein 

adsorption and cell binding by offering a strongly hydrophilic surface composition. 

Although Wong’s study showed intriguing promise for pHEMA construction, the 

device design used in the study consisted of a subdural shunt configuration, in 

which fibrous subdural catheter encapsulation developed. Consequently, the 

evaluation was inconclusive and the possible benefits of pHEMA as an anti-fouling 

catheter material were obscured.  In 1992, Gower, et al. [74] evaluated expanded 

polytetrafluoroethylene (e-PTFE) as another alternative to silicone. Commonly 

known as Gore-Tex, this material is currently used as a long-term implant in vocal 

cord treatments, arterial grafts, orthopedic joint implants, and facial plastic surgery 

because it is associated with minimal adverse tissue reactions.  However, Gower 

found that, although e-PTFE is successful in other applications and is safe as a 
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cerebral implant, the porosity of the material, which is on the order of only 5 µm, 

unfortunately permitted tissue ingrowth and catheter obstruction. 

An additional material modification included a VC coated with 

polyvinylpyrrolidone (PVP) for surface functionalization. Introduced in 1995 by 

Medtronic under the brand name BioGlide, PVP is a hydrophilic substance that 

can covalently bond to the surface of silicone as a hydrogel, providing a “water 

jacket” by virtue of water absorption and thereby creating a slippery surface.  A 

2004 study showed that such functionalization indeed provides some resistance 

to bacterial colonization [75]. However, the BioGlide’s surface was so slippery that 

the catheter lumen would sometimes slip out of the connectors attaching it to the 

valve in the shunt system, a problem that caused it to be removed from the market 

in 2010 [15, 76]. 

At the turn of the millennium, new advancements for VCs were introduced 

by commercial conglomerates, including Johnson & Johnson and Medtronic. 

Codman (J&J) investigated the antimicrobial-impregnated lumens previously 

researched by Bayston and Milner, and the resulting catheter, branded Bactiseal, 

was approved by the FDA in 2001. The catheter featured impregnation of 2 anti-

microbials, Rifampicin and Clindamycin HCL, into the silicone matrix [77]. A few 

years later in 2008, Medtronic introduced extracted silicone catheters, having 

unpolymerized oligomers removed for treatment in silicone sensitive patients [78]. 

On the design front, a wide variety of proposed catheter geometries were 

patented during this time, though few were actually adapted for clinical use. Lin, et 

al. published a landmark study [79] in 2003 that demonstrated, through 

computational fluid dynamics and experimental validation, that the commonly used 

12- to 32-hole perforation patterns in VCs make them highly prone to the type of 

obstructions that cause shunt failure. The study showed that only the most 

proximal hole sets (those furthest from the catheter tip) actually experience 

significant flow rates (50-75% of the entire flow volume) during CSF drainage, 

while the distal holes (those nearest to the tip) have substantially lower flow rates 

in comparison. The study suggested that a more uniform flow distribution among 

the catheter holes could help prevent shunt failure by decreasing the probability of 

occlusion of the proximal hole sets and that, in the case of a distal hole occlusion, 

at least some of the functionality of the catheter would be preserved. The resulting 

improvement was later approved by the FDA and introduced to the market in 2007 

as Medtronic’s Rivulet catheter. This device utilizes a configuration 4 parallel rows 

comprising holes of decreasing size, with the distal hole set being the largest. The 

uniformity of flow distribution of this design was verified again more recently in 

computational simulations by Galarza, et al. [80, 81] 
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2.2.5 Contemporary Ventricular Catheters (2005-2015) 
 

The last decade of shunt development has seen a renewed interest in VC 

design, as well as the incorporation of new materials and coatings. Today, most 

VCs are made of silicone polymer tubing and are available in straight 

configurations, which may be cut to the appropriate length intraoperatively, or 

angled configurations, which have a set length. Inner diameters of the tubing range 

between 1.0 mm and 1.6 mm and outer diameters between 2.1 mm and 3.2 mm 

[35]. Holes are usually arranged in 3 or 4 rows, equally spaced around the catheter 

diameter in the 1.0-1.5 cm nearest the catheter tip, with rows arranged either in 

parallel or staggered configurations, generally with 4-8 holes in each row. Holes 

within a row may be the same size, typically measuring between 0.25mm and 0.5 

mm at the outer catheter surface, or may change along the length of the row. Many 

holes feature a conical shape, slightly tapering toward the inner surface. Hole 

number, size, shape, and spacing vary among the different manufacturers [35, 80, 

81]. 

 

Material Considerations 

 

 Limiting the adhesion of proteins and cells that can cause catheter 

obstruction or infection has been a primary focus of VC research. Surprisingly, it 

has been found that high CSF protein concentrations may actually inhibit bacterial 

adhesion due to rendering the generally hydrophobic silicone more hydrophilic 

[82]. Protein adsorption alone has not been shown to cause accumulations in great 

enough amounts to generate occlusions, and the thin albumin film which most 

often forms may actually serve to improve the biocompatibility of the catheter [83]. 

A 2010 report showing that astrocyte adhesion was positively correlated to fluid 

flow through VCs [84] may explain the favorable initial results of experiments 

evaluating the cell growth characteristics of electrospun polyurethane catheters, 

which are microporous in nature and would have inherently lower flowrates than 

most catheters [85]. Another approach to reducing obstruction is to limit contact of 

the VC holes with brain tissues during ventricular puncture, so as to avoid the 

ingestion of parenchymal cells by the catheter. A peel-away sheath technique has 

been implemented by some neurosurgeons to protect the VC holes from brain 

debris during insertion. However, a randomized study, performed in 2012 by 

Kehler, et al. [86] in 177 patients with ventriculo-peritoneal shunts, showed no 

statistically significant difference in the number of obstructions among patients in 

which a peel-away sheath insertion technique was used. 
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A focus on catheter surface properties and coatings has also led to recent 

advancements. In 2007, a National Institutes of Health-sponsored workshop on 

the priorities for hydrocephalus research indicated the need for more in-depth 

research into the possible benefits of antibiotic-impregnated catheters [87]. In vitro 

and preclinical studies have shown that various forms of polyethylene glycol, a 

non-degradable hydrophilic polymer, may reduce protein adsorption and 

macrophage and astrocyte attachment when used as a catheter coating [88, 89]. 

The addition of silver-nanoparticles to such coated catheters also produced a 

notable drop in catheter-related infections [62]. Another possible improvement that 

has been suggested is diamond-like carbon coatings that are produced by plasma-

assisted chemical vapor deposition [90]. By acting as an effective ion diffusion 

barrier, such coatings can protect the patient from ions released from the catheter 

while at the same time protecting the catheter from the harsh biological 

environment. The incorporation of other surface-modifying coatings and additives, 

including surfaces that mimic native extracellular matrix or endothelial cell layers, 

incorporation of pharmaceuticals, bioactive agents, self-locating fluoro-oligomeric 

additives, and antithrombogeneic agents, show promise for further investigation 

[15]. 

 

Design Considerations 

 

Along with material and surface improvements, inlet hole design may also 

be key to improved VC functionality.   It has recently been shown that macrophage 

and astrocyte adhesion to catheters is greater in flowing fluid conditions than in 

static fluid conditions, making flow rate through each of the holes an important 

parameter to consider [84]. In addition to flow rate, the number and size of holes 

may also affect the rate of cell adhesion. Decreasing the number of inlet holes or 

the hole diameters causes fluid wall shear stress at the hole surface to increase, 

and increased shear stress has been linked to increases in cell adhesion (although 

at the other extreme, very low shear stress may increase cell adhesion as well) 

[91]. Further investigations into the influence of these factors on obstructions 

resulting from cell adhesion and inflammatory response are necessary, but 

changing hole configurations may be an inexpensive way to make meaningful 

advancements in VC design. The fabrication of these inlet hole configurations is 

also of interest since the techniques currently used sometimes result in the 

creation of inherently rough hole surfaces. Improving these techniques or adding 

secondary manufacturing steps to smoothen the hole surfaces, after hole punching 

processes for example, may help to reduce cell adhesion to these surfaces as well 

as decrease the incidence of thrombogenesis at the inlet holes [15, 91]. 
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Optimizing hole design and configurations has also been investigated as a 

means to reduce catheter obstruction. Along with the computational fluid 

simulations done by Galarza, et al. [80, 81] on different catheter configurations, an 

experimental study published in 2010 by Thomale, et al. [92] examined VCs with 

substantially fewer perforations. These experimental catheters were designed with 

a total number of either 4 or six 6 (as opposed to the more common 12 - 32 holes) 

located closer to the catheter tip, thereby reducing the length of the perforated 

catheter segment. The study was conducted in response to the hypothesis that 

proximal holes in the catheter may, on occasion, be positioned outside the 

ventricle, thereby increasing the risk of obstruction, especially in cases of slit-like 

ventricles. It was demonstrated clinically that catheters with fewer perforation 

holes, when correctly positioned within the ventricles, are sufficient to maintain 

shunt function and flow capacities. This finding confirms an earlier study [93], 

which argued that the same pressure-flow correlations may be observed in 

catheters bearing as few as 2 holes as well as those with the standard 32 holes. 

Both studies suggest that designs utilizing more than 2 holes do not necessarily 

correlate to improved drainage through the catheter.  

Methods of response to VC obstruction have also been improved in recent 

years. Invasive techniques of catheter recanalization, which require surgical 

exposure of the catheter, have been investigated over the past 2 decades. These 

techniques include pulsed laser energy delivered via a flexible optical fiber [24], 

ultrasound waves transmitted over a fine wire [94], and percutaneous endoscopic 

recanalization via electrocautery [50]. However, focus has more recently turned to 

finding non-invasive treatments. When an occlusion is suspected, a new non-

invasive imaging method combining pulsed laser light and ultrasound techniques 

has been proposed to allow surgeons to view the occluded catheter through the 

skull [95]. Once an occlusion has been identified, another recent study reports that 

transcutaneous vibration in the 50-60 Hz range, applied in short intervals, has been 

shown to maintain in vitro catheter performance and clear catheters that were 

completely occluded [22]. In addition, the novel inclusion of MEMS (Micro Electro-

Mechanical Systems) in the form of magnetic microactuators, has been studied as 

another alternative to clear blocked holes. These microactuators may prove 

advantageous, as they can be controlled noninvasively and require no integrated 

circuits or power sources [23]. 

Some of the recently patented design improvements to VCs have shown 

more of this novel thinking. One design features a rounded transparent tip which 

allows for the concurrent insertion of an endoscope through the catheter during 

surgery [96]. This can provide continuous visualization for intraoperative 

navigation of the catheter tip while in the fluid-filled ventricle. The tip’s round shape 
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is specifically designed to minimize contact with tissues that could potentially 

obstruct the view of the implant site. Another configuration features a 

biocompatible housing made up of several components. This housing may be fitted 

onto a standard catheter to specifically combat the potential for occlusions, 

particularly those initiated by an inflammatory response [97].  

 

2.2.6 Future Directions 
 

Overall, shunt development could benefit from a more holistic approach to VC 

engineering, taking into consideration the component’s biocompatibility, surface 

properties, surroundings, lifespan, and mechano-fluid dynamics. Evaluating the 

effectiveness of antimicrobial impregnated catheters as well as other infection 

prevention mechanisms should be a priority as these technologies continue to 

mature. Alongside material advancements, design optimization through systematic 

fluid flow testing of catheter hole configurations, for example, may also prove 

beneficial and remains a largely underexplored area for improvement.  

Another particular emphasis in several recent publications [11, 98, 99] has 

been on the role of VC placement in overall shunt success, especially in patients 

with smaller or abnormal ventricular anatomy.  Achieving optimal positioning with 

the VC completely surrounded by CSF remains challenging. Radiopaque 

indicators, typically utilizing barium sulfate or tantalum and incorporated into the 

VC polymer, are included in most commercially available catheters today and aid 

in verifying VC positioning. Still, the push for more accurate VC placement 

processes has certainly had an effect on surgical technology [18-21] and may have 

future effects on VC design. 

  

2.2.7 Conclusion 
 

Advances in the fields of biomaterials and biomedical engineering have 

made significant contributions to the ability of this implanted device to allow many 

patients to lead relatively normal lives. Unfortunately, VC development has been 

disappointingly slow, and this component remains plagued by both mechanical and 

bio-adaptability issues. Additionally, the environment into which VCs are implanted 

is unique and complex, making it difficult to attain a comprehensive understanding 

of their in vivo functionality. Detailed imaging of operational VCs in action is not 

available, and in vitro experiments cannot accurately mimic what a VC would 

encounter over the course of its implanted lifetime. The solution to catheter 

obstruction continues to elude engineers and neurosurgeons alike, due to the 

many variables that influence obstruction rates. These include location of the 
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catheter tip, varying CSF composition and flow characteristics among patients, and 

differences in catheter geometry among the many competing commercial designs 

available today [15]. By gaining an improved understanding of each of these 

mechanisms and their interactive effects, the scientific community can optimize VC 

design to resist or prevent obstructions, thereby reducing emergency 

interventions, revision surgeries, and their associated risks to the patient.   
 

2.3 Existing Fluid Dynamics Studies of Ventricular Catheters 
 

The optimization of ventricular catheter design first requires a thorough 

understanding of CSF flow through the perforated catheter tip. Since observing the 

actual flow through implanted catheters is very difficult and costly, even with 

today’s advanced medical imaging capabilities, the simulated fluid flow requires 

observation through ex vivo experiments and computational models. The thesis 

work following this literature review will be heavily based on the latter form of 

simulation, employing computational fluid dynamics (CFD) principles to model both 

the 2D and 3D cases of catheter flow. Several previous CFD studies on flow 

through ventricular catheters, Lin et al. [79] and Galarza et al. [80, 81, 100], have 

provided a significant basis for the current study and will be discussed here in more 

detail, though they are mentioned in the previous section as well. These studies 

are important as they have formed a basis for much of the current work of this 

thesis and have allowed for validation and comparison. 

 

2.3.1 Lin, et al. – 2D Computational and Experimental Study 
 

The first study specifically focusing on the flawed fluid dynamics of 

ventricular catheters was published in 2003 by Lin et al. [79].  The study featured 

a 2-dimensional (2D) CFD analysis on a standard catheter model featuring an 

inner diameter of 1.2 mm and 8 inlet holes per row, equally spaced and with equal 

diameters.  It was concluded that most of the CSF mass flow enters the catheter 

via the most proximal holes (those furthest from the catheter tip), with 58% entering 

through the first most proximal set of holes and over 80% entering through the first 

and second most proximal sets combined. The authors validated their results with 

2D water table experiments and a 3D water and ink experiment using a commercial 

catheter. Occluded ventricular catheters were also systematically collected from 

shunt revision surgeries during a 6-month period, and the majority of occlusions 

were indeed observed to occur at the proximal sets of holes. 

These observations led the authors to conclude that blockages are more 

likely to occur at the proximal holes where they effectively block any flow entering 
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from the more distal holes, thereby rendering the catheter unusable. Their 

proposed solution was to use varying hole dimensions and hole spacing to 

generate a more uniform mass flow rate distribution across the entire catheter tip, 

with the assumption that this will allow for a more equal probability of occlusion at 

each of the hole sites. If a more distal hole were blocked, the proximal holes could 

still function and so the chances for complete shunt failure would be reduced.  

 
2.3.2 Galarza, et al. – 3D Computational Study of 5 Existing Designs  
 

Influenced by the landmark study by Lin, et al., another group more recently 

revisited the problem of flawed fluid dynamics in ventricular catheters in 2013. 

Galarza et al. [81] developed 3D CFD models of 5 commercially available catheter 

designs. Their model used a 60 cc rigid cylinder to simulate the hydrocephalic 

ventricle. The 3D catheter models were generated using the Salome v6.6 software 

package, and then imported to an OpenFOAM CFD numeric solver which utilizes 

a finite volume method. The snappyHexMesh utility was used to form the 3D mesh, 

and the icoFoam solver was used for the computations. Non-slip and non-

penetration conditions were applied to the wall boundaries. For the inlet, flow was 

set to a constant 100 cc/day with a zero-gradient condition on pressure, and for 

the outlet, the pressure differential was set to 15 cm H20 with a zero-gradient 

condition on velocity. 

To obtain the flow rates for the 3D model, the catheters were analyzed by 

observing segments of equal length in the inlet hole section. Each segment 

contained the same number of inlet holes. Their conclusions were similar to those 

of Lin et al., showing the same uneven flow distributions in catheters with both 

intercalated and strictly parallel hole row arrangements, with the exception of the 

“Rivulet” catheter style which showed relatively uniform flow rates with a maximum 

in the medial hole sets. This design was developed to increase flow rate 

distribution uniformity between the inlet holes, and was indeed shown to be 

superior in this ability compared to the other designs analyzed. In all designs, 

higher flow velocities were observed at the most proximal holes, as well as 

elevated wall shear stress numbers which can increase cell adhesion [101] and 

impact the flow at each hole. 

 

2.3.3 Galarza, et al. – Suggestions for New Catheter Designs  
 

Galarza, et al. followed this paper with another 3D CFD study in 2014 [80] 

in which they proposed a series of 5 prototype catheter tips to improve upon the 

commercial designs analyzed in their previous paper. The same basic CFD model 
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was utilized for this study as well, only requiring modifications to the design of the 

catheters. Since the “Rivulet” design had previously shown the most uniform flow 

rate distribution, all of the prototypes utilized the Rivulet’s strictly parallel hole 

configuration. Some of the prototype configurations double the number of hole 

rows in the distal hole sets while still maintaining the parallel alignment. In this way, 

they were able to obtain relatively homogenous flow patterns, as those observed 

in the Rivulet design, but without necessarily changing the hole diameters, which 

previously required the use of very small holes. Other designs featured an 

increased degree of hole tapering at the proximal hole sets.  

 

2.3.4 Galarza, et al. – Parametric Study of Ventricular Catheters  
 
The third and most recently published paper in this series by Galarza, et al. [100] 

is a parametric study of ventricular catheters, with similar goals to that of the 

following thesis work. The authors expanded their CFD model to 12 new catheter 

prototypes, all featuring 2.5 mm outer diameter, 1.5 mm inner diameter, and 

conical holes in which the outer diameters remained constant but internal 

diameters were subject to change. As in their previous work with new designs, 

some of the catheters featured segments with different numbers of holes, so that 

the strictly parallel configuration was not maintained. They accounted for this in 

their flow rate calculations with a formula to normalize flow rates to the total inlet 

area in each segment. The study also featured ink and water tests to validate 3 of 

the designs and show that the hole with most prominent flow could be shifted 

depending on the prototype design selected. The study concluded with a summary 

of 5 design principles: 

 

1. Flow rate distribution is strongly influenced by the intersegment distances. 

These distances should be greater than 1 mm to maintain the catheter’s 

structural integrity. 

2. A hole distribution featuring decreasing inter-segment distances, as one 

moves away from the tip, contributes to a more uniform flow rate pattern. 

3. The actual number of holes in the catheter’s perforated segment does not 

significantly influence the flow rate pattern. 

4. Fewer segments over a given perforated area contributes to a more uniform 

flow rate pattern, provided that the inlet areas follow a set mathematical 

formula (presented in the paper). 

5. Rotating the inlet segments relative to each other around the axis of the 

catheter does not significantly influence the flow rate pattern. Also, the same 

is true of adding a patent hole at the tip end of the catheter. 
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2.3.5 How is this thesis innovative? 
 

As can be seen by the previous studies described in this section, this thesis 

is not the first to explore the subject of changing ventricular catheter design based 

on improvements to the catheter’s fluid performance. The previous studies 

developed both 2D and 3D CFD models to simulate the flow through a catheter, 

and 2 of the studies also featured some validation bench testing. The conclusions 

from these studies provided useful insight into the complexity of the problem and 

gave evidence that pursuing improvements in the catheter’s fluid performance 

could reduce failure rates. 

Increasing the catheter’s inlet flow distribution uniformity was suggested as 

the most readily identifiable improvement, so it is also the goal of the current 

research. However, whereas previous studies tested only a few prototype designs, 

the work in this thesis will test thousands of designs in a systematic way in order 

to optimize the catheter’s flow distribution. In such a way, this work will be a strong 

basis for future catheter design optimizations and will inform the efforts of future 

design engineers by creating an automated, iterative design exploration framework 

for investigating more complex optimization objectives. 

 

2.4 Physics of Shunt Flow 
 
2.4.1 CSF Flow Characteristics In-Vivo 
 

The hydrodynamics of cerebrospinal fluid (CSF) within the human body are 

extremely complex. They have been studied for many years [102-105], with 

varying degrees of success in understanding the many aspects influencing the flow 

rates, direction of flow, and interaction with other fluid systems in the body. Adding 

pathophysiological conditions such as hydrocephalus to the analysis makes 

matters even more complicated as such conditions may affect the production, 

circulation, and absorption of CSF in-vivo [106, 107]. Generally, in a healthy 

individual, CSF flows from the ventricles, through the various aqueducts into the 

subarachnoid spaces, and finally to its sites of absorption at the arachnoid 

granulations or villi. Three-dimensional CFD modeling has been attempted to 

simulate CSF flow within the ventricular system, and it was found that velocity is 

highest during passage through the aqueduct of Sylvius [108]. 

The pulsatile nature of CSF flow is related to the cardiac cycle and blood 

flow. CSF is generally produced at a relatively constant rate of 0.35 mL/min [109]. 

Production is itself due to arterial pressure and both active and passive transport 

in the choroid plexuses and the brain tissue. Since the volume of the cranium is 
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fixed, the brain and its surrounding fluids have a finite combined volume. Due to 

expansion of the cerebral vasculature during each cardiac cycle, in which the brain 

receives approximately 20% of the cardiac output, the other fluids (including CSF) 

are compressed. This creates a “pulse” in CSF flow, forcing fluid out of the 

ventricular system and cerebral subarachnoid space into the more compliant spinal 

sub-arachnoid space [107]. This pulsatile flow can be seen through cine-MRI 

imaging techniques [110, 111].   

 
2.4.2 Understanding Shunt Flow Rates 
 

In order to characterize shunt hydrodynamics, basic understanding of the 

physics of CSF flow in-vivo is required, as well as  an understanding of the 

influence of hydrocephalus and elevated intracranial pressure on this flow. In 

addition, the resistance provided by the shunt system’s tubing [112] and valves 

must be taken into account as these can greatly affect the achieved flow rates for 

a given device. It has been shown that CSF flow in most shunts is not governed 

by a constant flow rate [109, 113]. In a study utilizing a Doppler flowmeter to 

monitor “bubble-marked” in-shunt flow rates [113], it was shown that flow can 

fluctuate between 0.01 mL/min to 1.93 mL/min based on the individual’s supine 

position at an given point throughout the day. Changes in posture and head 

elevation can change flow rates by as much as 0.04 mL/min, and respiratory 

events, such as coughing, can have significant effects as well. 

 The effects of gravity and induced pressure elevations, such as coughing, 

make it difficult to estimate pressure requirements for shunt systems which must 

remain effective under all circumstances. The addition of a regulating differential-

pressure valve attempts to reduce the effects of these fluctuations in pressure, as 

does the addition of anti-siphon devices that are meant to counteract the influence 

of gravity on shunt hydrodynamics and reduce overdrainage. Most valves on the 

market today are normally closed and open only at a certain threshold of 

intracranial pressure. Most manufacturers provide bench test data in their catalogs 

showing flow rates for given differential pressure settings.  

However, these characterizations usually do not include in-vivo 

measurements of shunt flow rates – of particular interest would be the 

instantaneous flow rates associated with a “valve opening” event. It has been 

hypothesized that such events, after periods of static CSF containment in the 

ventricles, are potentially responsible for catheter occlusion. It has been argued in 

one publication [109], that valveless shunts that try to maintain a physiological flow 

rate of 0.35 mL/min would therefore stand a better chance of resisting occlusions 

by allowing a continuously slow and steady flow of CSF out of the ventricles. 
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CHAPTER 3: 

MATERIALS AND METHODS 

 

3.1 Overview 
 

The computational modelling, simulation, characterization, and optimization 

of ventricular catheters was the primary focus of this research. These tasks were 

accomplished by creating computational fluid dynamics (CFD) models to simulate 

catheter flow, and subsequently by using these models as a basis for optimization 

in a high-performance computing setting. Initially, a two-dimensional (2D) model 

was simulated in order to gain an understanding of the basic properties and 

patterns involved in catheter flow. Once this model was mature, it served as a basis 

for a more realistic three-dimensional (3D) quarter model. Both the 2D and 3D 

models were fully parametrized and so allowed for geometric exploration of the 

catheter’s design. All fluid modeling and simulation was accomplished using the 

open-source CFD software package, OpenFOAM®.   

As it provided more realistic results, the 3D model was chosen as a basis 

for sensitivity studies and optimization. The CFD simulations were coupled to an 

iterative parametric analysis framework, DAKOTA®. This framework provided the 

necessary algorithms to systematically sample the parameter space of the 

catheter’s geometric variables, and ultimately to perform optimization studies. The 

computational portion of the research required knowledge of CFD, scripting 

languages, including C++ and Python, and basic concepts in parallel computing. 

Simultaneous experimental testing both informed model development and 

provided validation data for the computational work. Both qualitative and 

quantitative experiments were performed via in-vitro bench testing setups. Visual 

experiments with India ink and water allowed for initial qualitative pattern analysis, 

and a more advanced fluid imaging technique, positron emission particle tracking 

(PEPT), was used to gather quantitative experimental flow data.  Both the 

computational and experimental work provided substantial insight toward a better 

understanding of the complexity of CSF shunt fluid dynamics and the reasons for 

frequent cases of obstruction. 

 
3.1.1 Computational Resources 
 

Much of the CFD modeling and some of the preliminary optimization were 

executed on a single Dell Precision T1650 workstation at the Department of 

Mechanical, Aerospace, and Biomedical Engineering on the University of 
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Tennessee, Knoxville campus. This workstation features 3.40 GHz Intel Xeon 

processor with 4 cores (hyper-threading enabled), and 16 GB of RAM. For the later 

stages of the study, a high-performance computing cluster system was utilized. 

The supercomputer “Darter”, located at the National Institute for Computational 

Research at Oak Ridge National Laboratory in Oak Ridge, Tennessee, facilitates 

computationally intensive research at the University of Tennessee, Knoxville and 

collaborating institutions. Darter is a Cray XC30 system with an Aries interconnect 

and a Lustre storage system. It has 11,584 physical compute cores and boasts a 

peak performance of 240.9 Tflops, or 1012 floating point operations per second. By 

running the simulations in parallel over many cores at once, execution time was 

significantly reduced for the larger-scale simulation runs. 

Since the computational software used in the study is largely script-based 

and most effectively controlled by commands executed in a command terminal, it 

was determined that it would be beneficial to install a lightweight, programmer-

friendly operating system (OS) on the single workstation. Ubuntu, one of the most 

popular free distributions of Linux, was selected as a favorable operating system 

since most open-source software (including OpenFOAM, and DAKOTA, which are 

discussed later in this chapter) are supported on this platform. In order to run a 

Linux OS on a workstation with a Windows OS already installed, a third-party 

hypervisor software Oracle VM VirtualBox (Version 4.3.16, Oracle Corporation) 

was used to create a “virtual machine”. This allowed a certain portion of the 

workstation’s processing capabilities and memory to be allocated to running an 

instance of Linux “on top” of the existing Windows OS. Ubuntu 64-bit (Version 

14.04) was installed, and all computational analyses were subsequently run on this 

“virtual machine”. Using a Linux OS also facilitated the transition to high-

performance cluster computing, in which most user interaction is strictly limited to 

a command terminal interface. 

 

3.1.2 Experimental Resources 
 

The validation experiments for this research work were conducted at the 

University of Tennessee, Knoxville campus. Commercial ventricular catheters 

were used for initial qualitative flow testing. For the quantitative experiments, a 

scaled-up version of a sample catheter was machined out of clear plastic (PETG) 

tubing. The experimental chambers were also made from plastic and required 

minimal machining. All machining was done in-house at the University of 

Tennessee, Knoxville.  

For the quantitative experiments, imaging techniques were employed that 

required the collaboration of several fellow researchers familiar with these 
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techniques. The nuclear imaging technique of positron emission particle tracking 

(PEPT) was performed at the Science and Engineering Research Facility on the 

University of Tennessee, Knoxville campus. Access to imaging equipment was 

generously provided by the collaborating research group, and the imaging itself 

was performed by researchers certified to work with radioactive materials. The 

author of this thesis contributed only to the pre- and post-processing stages of 

these experiments, and in the comparison of experimental results to the relevant 

computational simulations. 

 

3.2 Creating the CFD Model 
 
3.2.1 CFD Software: OpenFOAM® 
 

The main purpose of the CFD model in this study was to serve as a 

parametric template for running the numerous HPC studies. Because of the large 

number of simulations required, a model that minimized computational 

requirements while still capturing the necessary physical behavior was developed. 

The computational resources required to run the software was a critical 

component, as an instance of the software would need to be run for each separate 

simulation. Therefore, both the geometric modeling technique and the CFD 

software were selected with this criterion in mind.  

The free, open-source software Open Source Field Operation And 

Manipulation (OpenFOAM®, Version 2.3.1, OpenCFD Ltd.) was selected. It 

includes utilities for building the computational domain and mesh, numerically 

computing the flow fields, and extracting relevant post-analysis data.  OpenFOAM 

was also chosen because it can be controlled completely via user-written scripts 

and, therefore, lends itself well to design exploration and automated execution in 

an HPC setting. Additionally, OpenFOAM was the software used in the most recent 

published studies of catheter CFD simulation [80, 81, 100]; thus, results obtained 

using this software can be compared to previous relevant work in this field. 

As with most computational simulations, OpenFOAM’s operation can be 

divided into 3 main categories: pre-processing, solving, and post-processing. It has 

a standard directory structure and all of its operations are initiated via a command 

terminal by typing the relevant commands, found in the OpenFOAM user guide. 

An OpenFOAM case directory contains all of the files and scripts that are required 

for simulating a fluid dynamics model. The case directory initially contains 3 

subdirectories: “0”, “constant”, and “system”; after the solving process, it may 

contain additional subdirectories. The “0” subdirectory contains all information 

pertaining to initial conditions (at time t = 0), namely the initial pressure and 

http://www.openfoam.com/documentation/user-guide/
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velocity fields. The “constant” subdirectory contains all information about the fluid 

properties, geometry, mesh, and velocity/pressure boundary conditions. Lastly, the 

“system” subdirectory contains all computational information pertaining to the 

solver, including discretization schemes, tolerances, and simulation control 

parameters such as the number of allowed iterations. The scripts and dictionaries 

contained within these subdirectories follow standardized formats and are written 

in the C++ coding language. Simulation parameters, therefore, can be easily 

changed by the user by modifying and saving these text files accordingly. An 

example of OpenFOAM’s standard file structure is presented in Figure 3.1. 

 

3.2.2 Initial 2D Model 
 
The initial model of the CSF flow through a catheter was limited to two 

dimensions. The motivation behind starting the CFD modeling with a two-

dimensional (2D) model was to gain a conceptual understanding of catheter flow 

and of the properties required for an adequately accurate CFD simulation in 

OpenFOAM. Some discrepancies between the flow observed in the 2D model and 

the later three-dimensional (3D) model precluded the use of the 2D model as an 

adequate representation of real catheter flow for parameter sensitivity and 

optimization studies. However, creating the model was a crucial first step for initial 

characterization of CSF flow. Because the 2D model was lightweight 

computationally, many iterations could be performed in a relatively short period of 

time to accelerate model progression. These preliminary trials were the basis for 

later modifications implemented in the 3D model, including the identification of key 

Figure 3.1 OpenFOAM basic case directory file structure, before execution of a solver. 
Note: several files were added to reflect the cases run in this study. Individual case file 
structure may vary for other types of simulations. 
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geometric parameters, meshing and sampling methods, and gaining a general 

familiarity with OpenFOAM. 

 

Model Geometry and Mesh Creation 
 

The 2D geometry of the model was taken as a cross-section of a 

generalized three-dimensional (3D) fluid domain (see Figure 3.2). Domain 

symmetry was used as a justification to further cut this cross section in half. Since 

all geometries in OpenFOAM must be described in 3 dimensions, the cross-section 

was given an arbitrary thickness in the z-direction, which was necessary but had 

no impact on the 2D model solution. The generalized domain consists of a catheter 

placed in the center of a cylindrical chamber representing an enlarged, CSF-filled 

ventricle. The catheter outlet is located outside the walls of the chamber. This 

simulates the placement of a catheter in-vivo as it extends past the ventricle into 

the brain parenchyma and out of the patient’s cranium, where it then connects to 

the rest of the shunt device. The model simulates a case of non-communicating 

hydrocephalus, in that the catheter is the only outlet for CSF to exit the ventricle 

and the only inlet flow is from the slow, steady production of CSF within the 

ventricle. Fluid-solid interactions between the CSF and the catheter or ventricle 

were not included in this simulation, as the fluid flow is very slow and is not 

Figure 3.2 Top Left: Diagram showing the 3D model of a catheter in a ventricular chamber. 
Top Right: Cutting plane used to generate a 2D cross-section of the 3D fluid domain. 
Bottom Left: Example of full 2D cross-section and Bottom Right: Example of half of the 2D 
cross-section. 
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expected to influence the geometry of either body considerably (in this case, the 

ventricular “chamber” is of constant volume and the dynamic effects of a shrinking 

ventricle are not considered). Therefore, the fluid domain was the only one of 

interest for this model. The solid parts of the catheter and chamber were not 

modeled, but only included as boundary “walls” with no thickness.  

In OpenFOAM, both the fluid domain geometry and the computational mesh 

are defined in the “constant” subdirectory. The fluid domain and catheter geometry 

were modelled with OpenFOAM’s blockMesh utility, using the dictionary file 

blockMeshDict. When run, blockMesh defines the boundaries of the geometric 

shapes (points, edges, arcs, etc.), and dividing them into “blocks”, which are then 

divided into finer grids based on the user’s specifications outlined in 

blockMeshDict. This utility can produce a highly predictable, structured mesh, 

comprised solely of hexahedron or “brick” type elements. It was selected, instead 

of some of the more complex unstructured mesh utilities offered in OpenFOAM, 

because the user can systematically control all meshing parameters to build the 

mesh “by hand”. The final mesh has finer grids along the areas of interest, around 

the catheter inlet holes, and coarser grids around the borders of the cylindrical 

chamber (see Figure 3.3 on following page). 

Now the domain and mesh generation could be controlled via a template that 

receives input parameters. For this model, and later for the expanded 3D model, 

a Python script called preProcessing.py was written as such a template, to create 

a unique mesh when supplied with a catheter’s geometric parameters. Each time 

parameters were supplied to the script, a new set of point, edge, arc, and block 

definitions were generated for a new blockMeshDict file. The command blockMesh 

then used that file to construct a new mesh for the supplied geometry. Building 

such a well-defined mesh template was key to ensuring the ability to reproduce a 

mesh of reliable quality in the later automated stages.  

 

Fluid Properties and Boundary Conditions 
 

To complete the model setup, fluid properties and boundary conditions also 

had to be specified for the simulated fluid domain. Since CSF is comprised mostly 

of water (see Section 2.4.1), it is acceptable to substitute its fluid properties in the 

simulation for those of water, which are more well established in the literature. As 

part of OpenFOAM’s calculation of the Reynold’s number, Re =
d|U|

ν
 , a value for 

the fluid’s dynamic viscosity ν must be specified. For water at a body temperature 

of 37 °C, ν = 0.6959 × 10−6 m2/s.  This value is set within the transportProperties 

file in the “constant” subdirectory. Additionally, the turbulence model, 
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Figure 3.3 Top: Example of a 2D fluid domain model (with redundant 3rd dimension along 
Z axis) showing partial coarse mesh in outer area. Bottom: Close-up view of finer mesh 
generated around the catheter inlet holes area. 
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or lack thereof in this case, is defined in the RASProperties file, located also in the 

“constant” subdirectory. 

The initial velocity and pressure conditions are set in the “0” time directory, in 

the files p and U respectively. Since this simulation solves for the steady-state 

case, the initial conditions are the boundary conditions. For the boundary faces 

normal to the z-direction (thickness of cross-section) the “empty” keyword is used, 

as there is no flow occurring in this direction. Since the cross-sectional domain has 

also been cut in half lengthwise along the catheter axis, a “symmetry” boundary 

condition is applied to the face created along this cut. The inlet is designated as 

the face of the cylinder opposite to the catheter outlet, the circular face from which 

fluid exits the catheter. The outlet velocity is set to match a constant physiological 

flow rate of 0.35 mL/min. For a catheter with inner diameter 1.5 mm, this velocity 

is equal to 0.0033 m/s. Varying the catheter inner diameter causes the velocity to 

change in order to maintain the same flow rate. The inlet is given a boundary 

condition of “zero gradient” so that the outgoing flow is equal to the incoming flow. 

As for pressures, since the exact pressure values for an incompressible flow in a 

channel are not of interest, but only the pressure differences, the pressure is set 

to be a fixed value of 0 at the inlet and “zero gradient” on the outlet. 

 

Solution Algorithm and Settings 

 

With the mesh created and boundary conditions set, the next step of the 

simulation is to run the CFD solver. OpenFOAM offers several standard solution 

algorithms that each are best suited to solving different flow regimes and cases. 

For incompressible, steady-state flow of a Newtonian fluid, the simpleFoam solver 

is well-suited, and so this solver was selected for the catheter flow simulations. 

This solver couples the Navier-Stokes equations with an iterative procedure. This 

iterative process is performed at each of the nodes of the computational mesh and 

each finite volume is related to its neighbors via volumetric flux. The Navier-Stokes 

equations describe the relationship between pressure and velocity in a fluid.  

In three dimensions, the steady-state Navier-Stokes equations are 

formulated as shown on the following page, with 𝜌 as the fluid density, 𝜇 as the 

fluid viscosity, 𝑝 as the fluid pressure, and 𝑢, 𝑣, 𝑤 as the components of the velocity 

in the 𝑥, 𝑦, 𝑧 directions respectively. Note that gravity is accounted for as a body 

force, with the values of 𝑔𝑥, 𝑔𝑦, 𝑔𝑧 dependent on the orientation of gravity with 

respect to the chosen set of coordinates. This set of equations must be solved 

numerically, as no analytical solution is available for 𝑝, 𝑢, 𝑣, and 𝑤. 
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Continuity: 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

Momentum:  

(x-direction) 
𝜌 (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 

Momentum:  
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𝜕𝑧
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Momentum:  

(z-direction) 
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𝜕𝑤

𝜕𝑥
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𝜕𝑦2
+
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 The solver simpleFoam uses the SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations) algorithm to numerically approximate 𝑝, 𝑢, 𝑣, and 𝑤. 

The algorithm performs the following 8 steps in an iterative manner: 

  

1. Set the boundary conditions. 

2. Solve the discretized momentum equation to compute the intermediate 

velocity field. 

3. Compute the mass fluxes at the cells faces. 

4. Solve the pressure equation and apply under-relaxation. 

5. Correct the mass fluxes at the cell faces. 

6. Correct the velocities on the basis of the new pressure field. 

7. Update the boundary conditions. 

8. Repeat until a converged solution has been reached. 

 

A given solution’s convergence status is based on assessing the equation 

residual, a measure of the normalized error for a given variable (pressure, velocity, 

volumetric flow rate) over successive iterations of the method. The residual acts 

as a measure of the solution’s accuracy. When simpleFoam is run, a log is 

generated that includes information pertaining to the initial residual, evaluated at 

the beginning of an iteration based on current p and U field values, and a final 

residual calculated at the end of each iteration after the fields have been re-

evaluated.  

All solver settings reside within the “system” directory. The numerical and 

discretization schemes are set within the file fvSchemes. This allows the user to 

designate what methods are used for approximating gradients and interpolations. 

“Gauss linear” and “Gauss upwind” schemes were selected as they have been 

proven to work well with similar steady-state, incompressible flow cases. 

Numerical convergence criteria and relaxation factors also influence the numerical 

setup; these are changed within the file fvSolution. After discretization, solving the 



www.manaraa.com

 

33 
 

sets of linearized equations is done by a preconditioned (bi-) conjugate gradient 

algorithm: PCG/PBiCG for solving symmetric/asymmetric matrices respectively.  

The solver is set up to stop iterating once one of the following convergence 

criteria are met: if the residual falls below a specified tolerance, if the ratio of current 

to initial residuals falls below a specified relative tolerance, or if the number of 

iterations exceeds a maximum specified in the file controlDict. In order to achieve 

a sufficiently accurate solution, the tolerance was set to 1 × 10−6 and the relative 

tolerance was set to 0.01 for both p and U. The maximum number of iterations was 

set to 1000. Under-relaxation is a technique for improving computational stability, 

particularly in solving steady-state problems, by introducing a relaxation factor 0 

< ∝ <  1 . The relaxation factors for both p and U were set to 0.7 in order to balance 

solution convergence stability, which increases as ∝ gets larger, and the rate of 

convergence, which slows as ∝ gets smaller. 

In addition to setting the maximum number of iterations, the controlDict file 

is also responsible for specifying the outputs for the simulation. The number of time 

directories (for steady-state simulations these are simply iteration directories) kept 

and purged is specified here as well as the precision of the data recorded and how 

often the data is recorded. Additionally, the values to be sampled from 

predetermined locations in the computational domain and mode of their sampling 

are also defined here. This will be discussed in further detail in the next section. 

 

Flow Rate Sampling 
 

Since the objective of the simulations in this study was to characterize the 

flow rate patterns of flow through ventricular catheters, the values of the flow rates 

at the inlet holes and outlet needed to be sampled. Though methods of post-

processed sampling are available in OpenFOAM, using the dictionary file 

sampleDict, it was decided that iterative sampling would be more useful as it could 

be used as another indicator of solution convergence (i.e. if the flow rate residuals 

were sufficiently small, it would serve as another criterion for convergence). 

Therefore the utility topoSet was chosen to create sets of faces through which the 

inlet hole flow rates could be monitored at specified points in the iterative solution. 

Creation of the face sets was defined in the file topoSetDict, located in the 

“system” directory. In 2D, the faces were one cell thick in order to be easily defined 

using the boxToFace method, which uses vertex coordinates to define a box that 

surrounds the faces in question. Such a box was defined for each inlet hole, so 

that when the command topoSet was issued, face sets were generated and placed 

in the folder “constant/polyMesh/sets”. In 3D, another method was utilized as the 

faces were not as easily defined as in the 2D case. In the file controlDict, these 
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face sets are referenced and the mass flow rate “phi” is summed over all the faces 

comprising each inlet hole to give a single flow rate value for each hole. When 

simpleFoam is run, this sampling is performed at the intervals specified in 

controlDict. In this study, values were sampled every 100 iterations, and reported 

to a newly generated folder, postProcessing, in the case directory. Each hole inlet 

is given a separate subdirectory and log within this folder. A Python script, 

postProcessing.py was written to collect this flow rate data and calculate statistics 

based on the flow rate distribution among the inlet holes. 

 
3.2.3 Expanding the 2D model to 3D 
 

Transitioning the 2D case to 3D involved several modifications, though the 

same basic principles for mesh creation, numerical solution, and flow rate sampling 

remained the same for both cases. In the 3D case, the symmetry of the domain 

was again used to simplify the problem: a quarter-section of the domain was used 

in order to preserve the fact that there were 4 rows of circular holes in the catheter 

(see Figure 3.4 below). This important design feature was not present in the 2D 

model and was the primary motivation for switching to a 3D representation for the 

later parts of this study. The 2D model used a symmetry that would have 

represented the inlet holes as rectangular slots or channels when expanded to 3D, 

rather than representing them as the round orifices found in real catheters.  

Figure 3.4 Example of a quarter-section model of the 3D domain, obtained by using 2 
cutting planes. 
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While some of the flow characteristics of these two representations are 

comparable, they are nevertheless fundamentally different. This can be observed 

by taking the same catheter geometric parameters and implementing them in both 

the 2D and 3D models. The results, shown in Figure 3.5 on the following page, are 

qualitatively similar, but still markedly different, showing a 9.4% difference in the 

calculated standard deviation of the relative inlet flow rates. Since this standard 

deviation would serve as the value of interest in the later optimization stages, such 

an error was deemed unacceptable and therefore precluded the use of the 2D 

model as a sufficiently accurate representation of catheter flow.  

The main challenge in adapting the methods used in the 2D case to a 3D 

domain was in creating a new meshing algorithm with blockMesh. In order for the 

meshing template to remain sensitive to the same parameters, it would have to be 

built “by-hand” again, so that the definition of the points, edges, and arcs remained 

consistent as parameters were changed. This was tedious to do in 2D, but was at 

least easy to follow visually, and the mesh skeleton consisted of only around 200 

points and around 70 blocks. In 3D, such a task became unfeasible as the number 

of points grew to around 700 and the number of blocks to around 400. Therefore, 

after a schematic was built for a single section of the domain (for instance a section 

of the catheter that included a hole), the mesh definitions were automated and 

looped to create several such sections. See Figure 3.6 on page 37 for an example 

of a meshed 3D domain. This approach made meshing manageable, but other 

sections had to be meshed individually, such as the rounded catheter tip.  

The meshing template was incorporated into the Python script 

preProcessing.py and modified for the 3D case. In order to make the 3D case 

ready for an automated iterative solver, this file contained not only instructions for 

generating blockMeshDict files based on a given parameter set (including the 

number of holes), but now also contained instructions for generating the controlDict 

and topoSetDict files that also depend on geometric parameters. The controlDict 

file normally wouldn’t be influenced by the geometry, but when the number of holes 

is changed, so is the number of required face sets to be iteratively sampled, a 

number defined in controlDict. Therefore the preProcessing.py script was a key 

component of streamlining the setup process for each individual 3D case.  

Other modifications to the OpenFOAM input files had to be made as well. 

The domain boundaries no longer required the “empty” boundary conditions in the 

Z-direction, as this component of the velocity was now relevant. Also, the 

symmetry boundary condition had to be expanded to include the faces of the 

boundaries created by the quarter-section cut on the XY and XZ planes. In terms 

of sampling, the faces at the hole inlets that needed to be defined for topoSetDict 
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Figure 3.5: Results of running simulations in OpenFOAM with identical geometric 
parameters. Top: 2D planar domain velocity field. Middle: 3D quarter-domain velocity 
field (only XY plane shown). Bottom: Graph comparing flow rate distributions for the 
two simulations.   
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Figure 3.6 Top: Example of a 3D mesh over the entire domain. Bottom: Close-up 
views of the mesh around the hole inlets. Notice fluid filled holes extend in both +Y 
and -Z directions. 
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were now more complex, so patches for the hole inlets had to be separately 

defined in blockMeshDict. Then in topoSetDict these patches were converted into 

“cells” using the zoneToCell utility and to faces using the cellToFace utility. One of 

the most obvious disadvantages of the transition from 2D to 3D was the increase 

in computational complexity. While the 2D cases had on average 30,000 cells per 

model, the 3D cases averaged around 350,000 cells for a model with a similarly 

fine mesh. This dramatically increased the solver execution time; the measures 

taken to address this challenge will be discussed in more detail in Section 3.3.2. 

One of these measures included running each OpenFOAM simulation in parallel, 

by defining domain decomposition to a specified number of processing cores in 

the file decomposeParDict that is found in the “system” folder. 

 

3.3 Parameter Studies and Optimization 
 

After creating an effective CFD model in OpenFOAM, the next goal of this 

research was to utilize the model as a basis for iterative design exploration and 

optimization. The basic design of the catheter would be kept intact – a closed, 

narrow tube with rounded tip, and several rows of punched inlet holes near the tip. 

There are many existing variations on this design in clinical use today, each with 

slightly different hole sizing and locations. However, the subset of designs included 

in this study are ones with 4 parallel rows of holes, spaced equally around the tube 

circumference, since this is the partially axisymmetric design represented by the 

3D quarter-model created in OpenFOAM. For example, designs with staggered 

rows of holes are omitted from this study, although they are some of the more 

popular configurations.  These designs would require a more elaborate CFD 

model, requiring more computational resources to run, and would therefore be less 

efficient for iterative design exploration than the quarter-model representation. 

The goal of performing such iterative design investigations was to improve 

the fluid flow performance of the catheter, specifically to increase the uniformity of 

the flow rate distribution among the catheter’s inlet holes. The differentiator 

between this study and previous attempts to reach a similar goal [79-81, 100] is 

the ability to vary the catheter geometry on a larger scale, instead of testing just 

one or a few designs through simulation. By systematically varying the geometry, 

certain trends can be ascertained and later used as engineering criteria or used to 

identify potential candidates for optimal design. Again, in this study, optimization 

of design is only considered as it pertains to the aforementioned aspect of the 

catheter’s fluid dynamics. Other design criteria can certainly be identified and 

explored in the future, perhaps utilizing the methods outlined here, but these are 

outside the scope of this study. 
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3.3.1 Building an Automated Simulation Framework: DAKOTA 
 

In order to simulate the many geometries required for design optimization, 

it was necessary to introduce a governing parameter manager that would select 

values for the geometric parameters to be tested using the CFD model. Essentially, 

this component provided the geometric inputs for OpenFOAM, collected the 

processed outputs from each simulation, and then methodically selected the next 

set of inputs for simulation. The software chosen for this purpose was the free, 

open-source software Design Analysis Kit for Optimization and Terascale 

Applications (DAKOTA®, Release 6.2, Sandia Corporation).  

DAKOTA provides a script-based interface that interacts with simulation 

software such as OpenFOAM, and several forms of iterative analysis for use in 

applications such as optimization, uncertainty quantification, sensitivity/variance 

studies, and parameter estimation with nonlinear least squares methods. By using 

these methods, DAKOTA can enhance the utility of traditional computational 

methods by enabling their use as design tools, so that simulations may be used 

not just for single-point predictions, but also for automated, iterative evaluations of 

simulated design performance. Coupling DAKOTA to OpenFOAM allowed for a 

systematic exploration of the ventricular catheter design space.  

Another benefit of DAKOTA’s software package is that a user can try 

different iterative methods or meta-algorithms by simply changing only a few 

commands in the text input file and executing the new analysis. Exploring the 

various methods does not require intimate knowledge of the underlying software 

package, only an understanding of the theoretical applicability of the methods to 

the problem in question. Additionally, DAKOTA can manage parallel, concurrent 

executions of the computational model, whether on a desktop or high-performance 

cluster computer. This feature makes it a user-friendly choice for executing large 

numbers of independent simulations, as was necessary for the some of the studies 

conducted in this work. 

The interface with OpenFOAM was created by employing DAKOTA’s most-

commonly used “loosely-coupled” format. Also known as a “black-box” coupling, 

this type of interface does not require DAKOTA to have any direct awareness of 

the internal details of the computational model, only to exchange data with the 

model by reading and writing short data files. The type of analysis to be performed 

is specified by the user in a text input file, along with the directory and file names 

associated with the computational model, and then Dakota automatically executes 

the simulation code by creating a separate, external process. Each time a new 

OpenFOAM simulation is called for, a separate work directory is created. 
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Implementing the Interface 
 

DAKOTA analyses are run within a directory with a standardized file 

structure. A subdirectory casebase contains a template of the data necessary to 

run each OpenFOAM simulation. Within this directory are located the standard 

OpenFOAM case structure (see Section 3.2.1) as well as Python scripts for pre-

processing and post-processing. As described in Section 3.2.3, the preProcessing 

script controls the creation of the CFD geometry, mesh, and sampled faces. It is 

actually a template with “place holders” for values of the parameters that will be 

varied in the DAKOTA analysis. An input file dakota.in includes definitions for the 

iterative methods used for the analysis, the input variables and their ranges, the 

objective function and its derivatives, and specifies all interface and input/output 

methods. This file is the heart of the analysis and contains all of the pertinent user-

supplied information for how DAKOTA should execute the iterative analysis. See 

Figure 3.7 for an example breakdown of a Dakota analysis directory. 

As part of the interface definitions in dakota.in, a separate script is called as 

the “analysis driver”. This script is called simulator_script and resides in the main 

analysis directory as well. It basically gives the sequence of commands that must 

be run during each DAKOTA iteration (in this case, for each OpenFOAM 

simulation). For each iteration, the simulator_script calls for the entire template 

case directory casebase to be copied within the analysis directory and assigns the 

directory a unique name, such as workdir.1, workdir.2, workdir.3, etc. These will 

Figure 3.7 DAKOTA basic analysis directory file structure, before execution of an 
iterative method. Note: several files were added to reflect the typical analyses run in 
this study. Individual file structure may vary for other types of analyses. 
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serve as case directories for each individual CFD run. Next, the simulator_script 

begins the pre-processing stage of the iterative loop (see Figure 3.8).  

Each copy of the case directory contains the template file for 

preProcessing.py, with the parameters intended for iteration marked with place 

holders. A Perl script dprepro, which is distributed with DAKOTA and is located in 

the analysis directory, is called by simulator_script to write a parameter input file 

for the copied case directory. Then dprepro replaces the place holders in the 

preProcessing.py template with values from the parameter file. Next, 

simulator_script executes the Python command for preProcessing.py, creating the 

blockMeshDict, topoSetDict, and controlDict files for the OpenFOAM case.  

Following this, the rest of the typical OpenFOAM case commands and 

postProcessing.py are run by simulator_script and then the results of the CFD 

simulation are gathered and passed on to DAKOTA’s result files. This constitutes 

the post-processing stage of the iterative loop. In such a fashion, each iteration is 

performed by DAKOTA until the desired number of executed evaluations is 

reached. The cases may be run in series or concurrently by DAKOTA, an option 

that is specified in the file dakota.in. When coupled with the “asynchronous” 

descriptor, the specified number of concurrent evaluations are all launched 

simultaneously. When running DAKOTA on multiple processors, this allows the 

cases to be run in parallel, saving time.   

Figure 3.8 Flowchart loop showing the DAKOTA-OpenFOAM "black-box" or "loosely-
coupled” interface format. 
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3.3.2 Minimizing CFD Execution Time 
 

In preparation for the automated execution of thousands of simulations in 

OpenFOAM through the coupling with DAKOTA, the base 3D CFD case was 

reexamined for opportunities to reduce execution time as much as possible with 

minimal effect on the accuracy of the objective function. This involved utilizing the 

vector parameter study capability in DAKOTA, each time changing a different 

variable related to the execution of the CFD simulation, and analyzing the effects 

on execution time and on the objective function’s accuracy. These variables 

included the computational domain size, the mesh fineness, and the simulation 

convergence criteria. By making small concessions in accuracy, the average 

simulation execution time and time per solution iteration were substantially 

reduced, in some cases from hours to minutes.  

Slower-running, high-fidelity models were used for testing small sample 

groups, while the faster-running, low-fidelity models were used as a basis for the 

larger-scale studies. Because in the later stages, the objective was to compare 

flow profiles of various designs, the relatively minor reductions in accuracy did not 

present an obstacle to gaining a true understanding of the effects of changing the 

catheter geometry. Later, secondary simulations of designs of interest were 

conducted using the full degree of accuracy available.  

  

Domain Reduction Study 
 

In-vivo, the position of the catheter relative to the ventricle walls plays a 

significant role in the flow characteristics of CSF through the catheter. In future 

studies, a more accurate model of a catheter in a dynamic ventricular chamber 

that can expand or compress may shed some light on the interactions between the 

outflow of CSF from the ventricles and the corresponding changes in the catheter 

flow.  However, the effects of the ventricle walls on flow and vice versa were not 

the focus of this study. Therefore, in this case, the boundaries of the fluid domain 

are placed far enough away from the catheter inlet holes so as to negate any 

noticeable effects on the flow.  

However, in terms of computational efficiency, a relatively small domain is 

desirable so as to reduce the number of finite volume cells, and thereby reduce 

execution time required for the CFD simulation to converge. Therefore, a study 

was done to find the smallest computational domain that would still maintain a 

minimal influence of the chamber walls on the resulting inlet hole flow rates.  

Reduced computational domain boundaries were tested by incrementally bringing 

the walls closer in toward the catheter holes (see Figure 3.9 on page 44), while 
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keeping all other parameters constant, and recording the effects of these changes 

on the flow rate results. A relatively large initial domain with a distance                     

𝑋 = 16 𝑚𝑚 between the walls and the catheter holes was taken as a control, and 

subsequent simulation errors were calculated relative to the flow rates of this initial 

simulation. In this study, the simulations were all run until they satisfied the same 

convergence criteria, so each subsequent simulation required less iterations to 

reach convergence. Then, errors in both the relative flow rates of the individual 

holes and the flow rate standard deviation were calculated (see Table 3.1 below). 

As can be noted in the results of the test in Table 3.1, the errors generally 

grow as the domain is made smaller, especially after the transition between         

𝑋 = 6 𝑚𝑚 and   𝑋 = 4 𝑚𝑚, and the execution times improve. Both the average 

hole inlet flow rate errors and the flow rate standard deviation errors do not follow 

a consistently decreasing pattern. This is perhaps a sign that the domain size does 

not have a strong correlation to accuracy. Moreover, prior to the transition to        

𝑋 = 4 𝑚𝑚, the errors observed were all extremely low, much less than 0.1%. This 

would indicate that only when the domain was significantly reduced to 𝑋 = 4 𝑚𝑚, 

were the “wall effects” noticeable. 

After examining these results and considering their meaning, a value of   

𝑋 = 8 𝑚𝑚 was chosen for the subsequent simulations, as it provided a drastic 

decrease in domain size while not significantly impacting accuracy. The low 

additional error of approximately 0.01% in the relative flow rates and standard 

deviation was deemed reasonably acceptable for the tradeoff in lower execution 

time to convergence (approximately 40% less than at 𝑋 = 16 𝑚𝑚). This substantial 

reduction in execution time justifies the small reduction in accuracy, as much of 

the outer domain does not contain the flow field of interest. 

 

 

Table 3.1 Domain size reduction study results 

X 
[mm] 

Total 
Mesh 
Cells 

Execution Time [s] Average Hole  
Inlet Flow 

Rate  
Error [%] 

Flow Rate 
Standard 

Deviation Error 
[%] 

Per 
Iteration 

Until 
Convergence 

16 401412 0.870 1804.27 -- -- 

14 380108 0.945 1570.76 0.00695 0.00803 

12 359156 0.936 1404.92 0.01109 0.01306 

10 338684 0.871 1210.60 0.00452 0.00292 

8 316412 0.835 1060.11 0.01256 0.00846 

6 286412 0.844 906.86 0.03691 0.00474 

4 239420 0.655 612.04 0.22852 0.09026 
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Figure 3.9 Example of 3 sample domains tested in the domain reduction study. Note 
that the catheter length and other dimensions were kept constant, while only the 
chamber size X was changed. 
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Mesh Refinement Study 

 

 Similarly, the minimal required mesh refinement for convergence was 

determined by testing several values for a parameter n, which represents the 

number of cells into which a given geometric length is divided. The results may be 

seen in Table 3.2. Since the areas of interest for sampling were the hole inlets, it 

was chosen to designate that n+2 would be the number of cells in the X-direction 

for all hole inlets. Other catheter dimensions could have also served this purpose, 

but the inlet holes were chosen to ensure that the mesh always contained a 

minimum number of elements from which to sample the flow rates through each 

hole. In case n was set to 0, there were at least 2 elements for each inlet.  

This approach allowed for the smallest elements to be populated around 

the catheter inlets and wall boundaries, that were locations of significant behavior. 

The algorithm used for mesh population in the preProcessing.py script designated 

the element size to be used for each “block”. The number of elements and the 

linear “element stretching factor” in each direction (x,y,z) of a block are defined in 

the blockMeshDict file of each OpenFOAM case. A relatively fine mesh of n = 10 

(each inlet hole with 12 cells in the X-direction) was used as a control for this study. 

Then the n value was incrementally decreased and the flow rate errors relative to 

the control were calculated, as well as the standard deviation error (see Table 3.2). 

 As expected, as n gets smaller, the errors generally increase. To achieve a 

target goal of relative errors less than 0.5%, in either the average flow rate error or 

the flow rate standard deviation error, the lowest n value permissible is n = 8. This 

provides approximately a 40% improvement in execution time per iteration, 

compared to the n = 10 case. Although there is a slight dip in the errors for n = 5, 

it is not consistent with the other error patterns and is therefore not an alternative 

to n = 8. An example of increases in mesh refinement is shown in Figure 3.10. 

 
 
Table 3.2 Mesh refinement study results 

n 
Total 
Mesh 
Cells 

Execution Time [s] Average Hole 
Inlet Flow 

Rate 
Error [%] 

Flow Rate 
Standard 

Deviation Error 
[%] 

Per 
Iteration 

Until 
Convergence 

10 436104 1.209 2043.73 -- -- 

9 372652 1.029 1496.59 0.21229 0.17017 

8 300464 0.749 946.46 0.35902 0.28380 

7 215870 0.438 487.83 0.67439 0.53624 

6 160807 0.316 295.70 0.81517 0.64639 

5 105556 0.170 136.89 0.54448 0.43964 

4 75280 0.123 74.50 1.06895 0.87774 
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Solver Convergence Criteria Study 
 
 The last variables to be tested in the effort to reduce computational time 

were those relating to solver convergence. As discussed in Section 3.2.2, the 

convergence of each CFD simulation is governed by several convergence criteria, 

specified for each case in the fvSolution and controlDict files of the “system” 

subdirectory. A simulation will be terminated when any one of the following three 

criteria is satisfied:  

 

1. if the residuals for U and p (velocity and pressure respectively) fall below 

given solver tolerances, specified in fvSolution 

2. if, for a given iteration, the ratio of final to initial residuals for both U and p 

fall below given relative tolerances, specified in fvSolution 

3. if the number of iterations exceeds a maximum number of iterations, 

specified in controlDict 

 

Since these criteria obviously affect the solution accuracy and execution 

time in a very direct way, it was determined that they should be tested for their 

effect on the flow rate and standard deviation errors. The selected values for 

domain size and mesh fineness from the previous studies in this section were set 

as a base for this study as well. All other parameters, including the domain 

geometry, were also kept constant. Both solver tolerances and relative tolerances 

were set to the same values respectively in both their U and p definitions, to limit 

the number of variations. It is important to note that although the simulated 

pressure values were not directly of interest for these studies, the accuracy of the 

pressure values does affect the accuracy of the velocity values, as these outputs 

are linked by the SIMPLE algorithm. 

Figure 3.10 Example close-up views of inlet hole meshes with increasing mesh fineness 
number n. Left: n = 5, Middle: n = 7, Right: n = 9. 
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To isolate the effect of changing the solver tolerances, the relative 

tolerances were all set to 0 in order to force the solution to converge to the solver 

tolerance. Also, the maximum number of iterations was set to a very high value of 

10,000 to allow the solver to reach the various tested tolerances without being cut 

off by this additional limiting criterion. The control test was performed with a very 

demanding tolerance of 1 × 10−8. Subsequent tests increased this tolerance on 

a logarithmic scale, thereby causing the number of iterations required to 

convergence to grow.  

From the results, shown in Table 3.3, it can be seen that increasing the 

tolerances from 1 × 10−8 to 1 ×  10−6 had almost no effect on the accuracy of the 

values of interest. Only when increased to 1 × 10−5 was there a noticeable effect 

on the accuracy. Tolerances of 1 × 10−4 and 1 × 10−3 produced extremely fast 

convergence, but the errors in the values of interest grew to over 1%. Therefore, it 

was decided that tolerances of 1 ×  10−5 were acceptable, producing errors less 

than 0.005%, but that further increases to the tolerance would not be acceptable. 

Next, the parameter of relative tolerance was reviewed in a similar way, beginning 

with a small relative tolerance and gradually growing larger.  However, the results 

of the study for relative tolerance were inconclusive. For relative tolerances above 

1, the simulation did not converge properly and so those results were discarded. 

For relative tolerances below 1 (0.1, 0.01, 0.001, etc.), the convergence patterns 

for the simulations were nearly identical, indicating that the relative tolerance 

criterion was not the one responsible for ending the iterative process in these 

cases. Rather, it seems, that solver tolerance was again the controlling criterion. It 

was determined that a constant relative tolerance of 0.01 should be used.  

A similar problem existed with varying the maximum number of allowed 

iterations. Such a test would also have been inconclusive, since the changes in 

accuracy would have stemmed from forcing the simulation to end prior to it rea- 

 

 

Table 3.3 Solver tolerance study results 

Tolerance 

Execution Time [s] 
Average Hole 

Inlet Flow Rate 
Error [%] 

Flow Rate 
Standard 

Deviation Error 
[%] 

Per Iteration 
Until 

Convergence 

1 x 10-8 0.655 1684.49 -- -- 

1 x 10-7 0.561 1037.09 < 0.0001 < 0.0001 

1 x 10-6 0.527 590.12 0.00053 < 0.0001 

1 x 10-5 0.530 289.47 0.00381 0.00255 

1 x 10-4 0.587 100.34 1.61748 1.14882 

1 x 10-3 0.709 39.68 15.5939 13.8822 



www.manaraa.com

 

48 
 

ching convergence. Using results with differing levels of convergence would not 

allow for a quantifiable or robust comparison. After performing many simulations, 

it was found that if given the same boundary conditions, most simulations 

converged to the solver tolerance before reaching 1000 iterations. So, to act as a 

cap for the time spent on each simulation, 1000 was chosen as the maximum 

number of allowed iterations for the subsequent simulations. See Figure 3.11 for 

an example graph of the numerical residuals for a typical simulation.  

 
3.3.3 Design Parameters 
 

When broken down into its constituent dimensions, one finds that even the 

relatively simple geometry of the ventricular catheter is defined by a large set of 

variables. For example, each individual inlet hole has several dimensions 

associated with it; so, if each hole is considered separately, the total number of 

design parameters can easily exceed 20 or even 30, depending on the number of 

holes per row. Although 20 or 30-dimensional design investigation is not 

impossible, especially with the help of high-performance computing, it still presents 

many mathematical and computational challenges that make it unfeasible and 

impractical for this investigation. Therefore, the number of design variables had to 

be reduced in order to bring the dimensionality of the parameter space down to a 

more manageable number. In addition, the ranges of each variable were minimized 

to the extents possible in order to further reduce the parameter space allowed for 

exploration. 

Figure 3.11 Example graph of CFD simulation numerical residuals. Ux is velocity in x-
direction, Uy is velocity in y-direction (Uz is the same), and p is pressure. Note that the 
simulation ends at around 675 iterations, converging prior to the 1000 iteration limit. 
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This reduction required the application of certain assumptions and 

simplifications, as well as some knowledge of the engineering physics behind the 

catheter’s geometry. The parameters of interest included catheter wall thickness, 

distance from catheter tip to the first inlet hole, spacing distances between inlet 

holes, inlet hole diameters (interior), and inlet hole degree of tapering (see 

Figure 3.12). These parameters were chosen because they had the greatest 

likelihood of affecting the inlet hole flow rate distribution, both intuitively and based 

on evidence in the literature. Individual inlet hole diameters were characterized by 

the diameter measured at the interior lumen of the catheter, as opposed to the 

larger exterior diameter created by the hole taper, because it is the interior 

diameter which limits the inlet flow rate and so this parameter was of greatest 

interest. Maximum diameters were defined as the diameter at which two holes, 

spaced 90° apart, would begin to intersect at the interior catheter lumen.  

Tapering of the holes is usually a byproduct of the hole punching process. 

Compressive and tensile stresses cause distortions at either end of the hole during 

punching and the taper is created after the material undergoes relaxation. Drilling 

and laser hole fabrication techniques may reduce this phenomenon and can 

produce nearly straight holes. Therefore, this parameter is dependent on both the 

materials and manufacturing process involved. To estimate a range for possible 

tapers, photographs of punched sample catheters, from a study demonstrating the 

Figure 3.12 Cross-sectional schematic of catheter geometric parameters: a) distance 
from catheter tip to the first inlet hole, b) first hole spacing, c) subsequent hole spacing, 
d) interior hole diameter, e) degree of hole tapering, f) catheter wall thickness.   
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effects of catheter hole size on cellular adhesion [91] were examined to estimate 

common degrees of tapering. As for hole spacing, it was deemed most important 

to track the exterior spacing, as opposed to the interior spacing, as the hole tapers 

cause exterior spacing to be the smaller of the two. The minimum spacing between 

holes must be above a certain minimum value in order to preserve the structural 

viability of the catheter; therefore, it was of greater interest to track the exterior 

spacing parameter. Additionally, the overall section length containing the inlet 

holes is commonly limited to the 1.5 cm closest to the catheter tip, in order to 

increase the probability that the inlet holes remain inside the ventricle after surgical 

placement. These design considerations are summarized in Table 3.4. 

Other variables remained fixed, such as the catheter internal diameter (ID) 

and number of holes. The ID was not varied, since doing so would require also 

iteratively changing the outlet velocity to maintain constant flow rate across 

simulations.  For the fixed catheter ID of 1.5 mm used in the studies, the outlet 

velocity is set to 0.0033 m/s in order to meet the required 0.35 mL/min physiological 

flow rate. For a smaller ID of 1.2, for instance, the velocity would need to be 

0.00515 m/s to attain the same flow rate. Changing the catheter geometry and the 

fluid velocity would not allow for direct comparisons between the models. Similarly, 

the number of holes was not varied, since changing this parameter fundamentally 

changes the flow rate distribution pattern. So it was decided to conduct separate 

sensitivity and optimization studies for each variation in the number of holes. 

Variations on configurations with any number of holes per row could be explored 

with the same CFD model template, by each time changing the parameter for 

“number of holes”. However, iterative analyses for the 6-hole design are the focus 

of the studies in this thesis.  

 

 
Table 3.4 Design considerations for parameter ranges 

Parameter 
Parameter Range 

Considerations 
Minimum Maximum 

Inlet hole diameters 0.25 mm 
Catheter ID  
x sin(45°) 

Structural integrity of interior 
lumen, preventing large 
obstructions 

Distances between 
inlet holes 

2 x Wall 
Thickness 

2.00 mm 
Structural integrity, max. length 
of perforated catheter segment 

Inlet hole degree of 
tapering 

0°  20° 
Fabrication process, sample 
values extracted from previous 
study 

Catheter wall 
thickness 

0.30 mm 0.70 mm 
Structural integrity, PDMS 
extrusion limitations 
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3.3.4 Selecting an Optimization Strategy 
 

Optimization is a general concept that can include the use of many different 

types of numerical methods, individually or in various combinations. In most design 

optimization problems, input parameters of interest are called “design variables” 

and the output or target variable is called the “objective function”. Selecting the 

best method(s) for an optimization problem is generally based on the 

characteristics of the objective function to be optimized and on the computational 

resources available. Here is a brief summary of the main choices to be made when 

selecting an optimization method in DAKOTA [114]: 

 

1) Local vs global: Local methods are best suited for navigation to a 

minimum in the near vicinity of an initial point provided to the algorithm, 

while global methods can be used to search the entire range of a set of 

given input variables.  Local methods, therefore, require identification of 

a “favorable” initial point, close to the function minimum. 

 

2) Gradient-based vs. derivative-free: Gradient-based optimization 

methods are used to explore smooth, continuous objective functions, 

while derivative-free methods can be used to explore nonsmooth 

functions, like those containing noise or discontinuous peaks. Global 

methods are generally derivative-free. All optimization methods in 

DAKOTA require continuous variables. 

 
The objective function chosen to explore catheter fluid performance was the 

standard deviation of the relative flow rates of the catheter’s inlet holes. The values 

comprising this function are derived from calculating the standard deviation of flow 

rates, which are a numerical approximation of a physical problem. Therefore, it is 

not likely that this function exhibits the smooth, continuous properties required for 

identification of a minimum using gradient-based methods. As the function is 

described in a hypervariate space, with more than 10 input variables, it is not easy 

to visualize the function using conventional plotting methods and to confirm this 

hypothesis. However, it is logical to assume that it is not a “well-behaved” function. 

Thereby, the use of gradient-based methods, while not to be ruled out completely, 

should at least be questioned in terms of the validity of the results they would 

produce. 

Each of the input variables has, at least to begin with, a large, independent 

range of values that it can assume. With each of the values in the range having 

equal probability to be part of the optimal combination of variables, a global, 
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derivative-free optimization method would seem to be the best choice. However, 

most of these methods are relatively inefficient and would require many tens of 

thousands of function evaluations in order to sufficiently explore such an 

expansive, hypervariate parameter space. If, however, it would be possible to 

identify areas of interest within the parameter space, this could bring the 

optimization problem to a point where local methods may be used more effectively. 

For example, if a few thousand variable combinations are tested and between 5 -

10 points showing very low values of the objective function are identified, they may 

be used as the initial points for local methods. 

With this strategy in mind, a few methods were used to perform an initial 

exploration of the parameter space, independent of any of the aforementioned 

optimization methods. The goal of this investigation was to characterize the 

influence of each parameter individually and to identify initial values for local 

optimization. The first method was to perform one-at-a-time sensitivity studies on 

each of the parameters of interest, in order to identify those parameters that 

individually had the most critical impact on the objective function. This knowledge 

helped to reduce the dimensionality of the parameter space, as well as to give 

guidance in selecting the best ranges of the remaining parameters for subsequent 

testing. After this series of tests, the remaining parameter space was explored in 

its entirety by using a Latin Hypercube Sampling (LHS) method. This is a statistical 

method used to generate a collection of input parameter sets that effectively cover 

the entire space. LHS divides the range of n variables into m subdivisions, which 

are equally probable, and ensures that there is one sample in each of the 

multivariate rows and columns created by the subdivisions.  

This method ensures that the ensemble of random input selections is 

representative of the actual variability of the parameters, which puts it a step above 

completely random sampling. Orthogonal sampling is a further step above that 

ensures that the selections are a very good representation of the real variability; 

but generally, it has a requirement on the minimum number of samples for a given 

dimensionality. One of the advantages of LHS is that the number of samples is 

independent of the number of dimensions, allowing the user to select the desired 

number of samples. LHS was chosen for this reason, as orthogonal sampling 

would have required a very large number of samples for such a high-dimensional 

parameter space. Several thousand function evaluations were systematically 

performed using the LHS method, starting with very general parameter ranges, 

and subsequently zeroing in on specific ranges or variables. As described in 

Section 3.3.2, these large simulations were performed using the low-fidelity 

settings in OpenFOAM, so as to save on computational time. A 1000-sample LHS 

run could be performed on the single Dell workstation in 9.5 hours. 
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The high degree of coverage of the parameter space can be seen in 

Figure 3.13, where a 5-dimensional space, in this case of five hole radii, is shown 

as 2D couplings of each of the variables. A 10-dimensional parameter space, for 

instance, could similarly be decomposed using 100 2D plots. That notwithstanding, 

with a high-dimension parameter space, there is no guarantee that multiple 

iterations of similar combinations are sampled – each parameter set is unique and 

with so few samples, there is not much repetition of similar sets. This is the main 

disadvantage of LHS as opposed to orthogonal sampling.  

After this initial exploration, several of the parameter sets that minimized the 

objective function in these LHS runs were gathered. Each one was verified to be 

unique, as opposed to simply a derivative of one of the others, and was set as an 

initial point for a subsequent local optimization run. The optimization method 

chosen for this study was the “coliny pattern search” method. This local, derivative-

free optimization method was chosen as it can “walk” through the domain using a 

defined stencil of search directions. It is best suited for navigation to a local 

minimum in the vicinity of the initial point; however, it can sometimes exhibit limited 

Figure 3.13 Coverage of 5-dimensional parameter space, in this case the radii of holes 
2 to 6, sampled by 1000 samples using LHS. Parameter space is decomposed to 25 
pairs of 2-parameter combinations. 



www.manaraa.com

 

54 
 

global optimization abilities if the stencil allows it to “step over” local minima [114]. 

Optimized results from these final runs were run again using the high-fidelity CFD 

model and their fluid performance compared to standard catheter designs.  

 

3.3.5 Running in Parallel  
 

On the Dell workstation, using 4 core decomposition in OpenFOAM and 

serial evaluations in DAKOTA, 1000 low-fidelity runs took 9.5 hours. Low-fidelity 

runs were set with a wall distance X = 6, mesh fineness n = 5, and solver tolerance 

of 5 x 10-5. The result of these reductions in computational time amounted to 

estimated errors of between 0.1 and 1% in individual flow rate errors and less than 

1% in the standard deviation (objective function) calculation. In order to further 

reduce execution time during these long runs, the high-performance computing 

resources, described in Section 3.1.1, were utilized.  

After installing DAKOTA on the Darter supercomputer, which was done in 

the user’s directory of the Lustre parallel file storage system, it was coupled with 

Darter’s already installed OpenFOAM module, which is available to all users. 

Darter allowed DAKOTA to run several OpenFOAM simulations simultaneously 

from the subdivision of the system’s processors called the ‘aprun nodes’. DAKOTA 

is activated through the ‘login nodes’ subdivision using a PBS job scheduler and 

then runs as a higher level process, further scheduling each OpenFOAM run to 

individual compute nodes using the ‘asynchronous’ and ‘concurrent evaluations’ 

settings. A schematic of the parallel running structure of this DAKOTA-OpenFOAM 

framework on the Darter supercomputer can be found in Figure 3.14 on the 

following page. 

For example, requesting 20 compute nodes via the PBS job scheduler gives 

DAKOTA the ability to run 20 function evaluations concurrently. Each of these is 

further decomposed by OpenFOAM’s decomposePar utility into each node’s 16 

cores. Such a configuration reduces the total time required for the same 1000 low-

fidelity runs, such as one of the LHS runs, from 9.5 hours to around half an hour, 

a much more acceptable time for such an engineering optimization application. 

Additionally, when high-fidelity OpenFOAM simulations are required in large 

numbers, running in parallel is the only feasible option for use in an actual 

engineering situation. Though running on more nodes can proportionally influence 

the run time, it was not appropriate for the studies run here. This is because the 

Darter supercomputer is a shared resource and requesting large portions of its 

compute nodes requires users to wait in a queue until the requested resources are 

made available. Therefore, 20 nodes was the maximum number requested at a 

time, and in this way, queue times were kept to a reasonable length.  
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Figure 3.14 Schematic of the parallel organization used to run DAKOTA and OpenFOAM 
on the Darter supercomputer, utilizing 20 compute nodes. 
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3.4 Experimental Validation 
 
3.4.1 Water and India Ink Demonstration 
 

As an initial validation of the computational model, and of the models 

presented in previous studies, a water and ink test setup was implemented to 

visualize the streamlines of water flowing through a commercial catheter. The 

silicone catheter used in the demonstration features a design and hole 

configuration which is available for clinical use: it has 4 rows of inlet holes, each 

containing 5 holes, in a staggered configuration around the catheter. The catheter 

was suspended in a beaker of water, with the tip facing downward. The outlet of 

the catheter was connected to a peristaltic pump, set at a constant average flow 

rate. India ink, a water-based ink often used in artistic pens, was injected into the 

flow stream near the catheter tip. Figure 3.15 below shows the bench test setup. 

The pump was set to a high average flow rate of about 75 mL/min. This high 

flow rate, more than 200 times higher than the physiological CSF flow rate of 0.35 

mL/min, was necessary in order to create the visualization. A slower pump setting 

would have allowed the ink enough time to settle to the bottom of the beaker or to 

dissolve into the surrounding water. Therefore, the results of the demonstration 

cannot be directly compared to results seen in the computational model. This 

higher velocity flow can, however, demonstrate the kind of flow field seen at the 

time of a shunt valve opening. During such opening events, the high pressure 

buildup at the ventricular end of the shunt creates a driving force that could 

certainly cause fluid in the catheter region to reach flow rates of up to 10 - 20 

mL/min. Such flows in-vivo would exhibit a flow regime similar in magnitude to the 

one observed in this demonstration.   

 

Figure 3.15 Water and India ink demonstration setup. 
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3.4.2 Nuclear Imaging Test Using PEPT 
 

As another method to visualize flow through a ventricular catheter, the 

nuclear imaging technique of positron emission particle tracking (PEPT) was 

utilized as an additional in-vitro bench test. A photograph of the test setup can be 

seen in Figure 3.16. PEPT is performed in a positron emission tomography (PET) 

scanner, a machine often used clinically to create medical images of soft tissues 

such as cardiac tissue, neural tissue, and even cancerous tumors. The subject is 

injected with a radionuclide tracer and placed within the scanner’s horizontal bore. 

The tracer emits positrons which, upon collision with electrons in the near vicinity, 

are annihilated and create two coincident 511 keV gamma rays. These gamma 

rays are detected by sensors in the bore and can be used to construct three-

dimensional images of radionuclide concentration in the subject. PEPT can be 

similarly used to image fluids into which tracer-laden particles have been 

introduced [115, 116]. Processing the raw data produces time series images of 

relative particle positions in the fluid, which can then be used to construct an 

approximation of the fluid velocity field. The machine used in this test was the 

Inveon® preclinical PET scanner (Siemens Medical Solutions).  

In this experiment, a scaled-up version of a standard 32-hole catheter with 

a parallel 4-row configuration was used. Scaling the catheter was necessary in this 

case, as the resolution of the scanner would not have been sufficient to image the 

flow to the inlet holes of a commercial catheter, which are on the scale of less than 

1 mm. A rigid catheter was machined out of clear plastic (PETG) tubing with inner 

diameter 0.25” (approximately 4.5 times larger than a commercial catheter). The 

Figure 3.16 Photo of the test section and catheter in the bore, connected to the 
peristaltic pump. 
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other dimensions of the model catheter were all similarly scaled. Tapering of the 

inlet holes was not modeled – all were straight bores of approximately 4.5 mm 

diameter. With inlet holes of this size, the goal of the test was to track the fluid 

velocity at the entry to the holes and then to compare these inlet flow rates to those 

observed in the computational simulations. A schematic of the scaled catheter in 

the test section within the scanner bore may be seen in Figure 3.17. 

In order to achieve such a comparison, with an enlarged catheter model, 

the flow regime also had to be scaled appropriately to mimic the flow seen in the 

computational model using Reynold’s scaling principles. The Reynold’s number of 

flow in a tube or pipe, like the catheter, is defined by the following equation: 

𝑅𝑒 =  
𝑄𝑑

𝜈𝐴
 

where 𝑅𝑒 is the dimensionless Reynold’s number, 𝑄 is the volumetric flow rate, 𝑑 

is the tube diameter, 𝜈 is the kinematic viscosity of the fluid, and 𝐴 is the cross-

sectional area of the tube. The Reynold’s scaling principle allows the flow 

properties of a fluid domain to be analyzed using a scaled model, as long as the 

Reynold’s number is maintained constant between the models. Since the 

geometric dimensions in this case had to be scaled up, causing a decrease in the 

ratio of 𝑑 to 𝐴, the ratio of 𝑄 to 𝜈 had to be increased proportionally in order to keep 

the Reynold’s number the same. The full calculation of the Reynold’s scaling for 

the catheter model and fluid is presented in Appendix A-1 Reynold’s Scaling 

Calculation for Nuclear Imaging Test.  

Figure 3.17 Schematic of the scaled catheter in the test section within the scanner bore 
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The viscosity 𝜈 of the fluid in the test had to meet another condition as well, 

due to the requirement that the particles used to carry the radionuclide tracer would 

be neutrally buoyant in the surrounding fluid. This buoyancy requirement was 

necessary so that the particles would indeed follow the trajectory of the fluid as 

accurately as possible. The particles used were hollow, spherical anion exchange 

resin beads with a mean diameter of about 75 microns. Though the beads absorb 

the fluid in which they are immersed, allowing for partial density matching, they still 

eventually sink in pure water. Therefore, in order to meet the requirement, the 

density of the fluid was increased by adding sucrose to the water. The solution was 

brought to approximately 37.5% sucrose to water by mass, and allowed to fully 

dissolve, increasing the density to 1.165 g/cc and the viscosity by a factor of 14.45. 

The flow rate 𝑄 was again dictated by the flow rate of the peristaltic pump. 

For any appreciable movement to be detected visually in the fluid, the maximum 

pump setting of about 75 mL/min was again used. The flow rate was measured 

several times, averaged, and recorded as 76.2 mL/min or 1.27 mL/s. Because the 

flow rate was dictated by the pump, an adjustment was made to the computational 

flow rate in order to continue to meet the Reynold’s scaling requirement. Therefore, 

the outlet velocity in the CFD simulation was increased from 0.0033 m/s to 0.01175 

m/s. This increase in velocity, by a factor of about 3.5, did not significantly affect 

the simulated flow profile, with an average of less than 10% difference in the 

calculated relative flow rates. Accordingly, the experiment could still be used to 

effectively compare catheter performance statistics with the computational model, 

such as percent flow rate at a given hole.  

The scaled catheter was placed in an open-top test section specifically 

machined to fit the PET scanner bore (see Figure 3.17). Approximately 650 mL of 

the sucrose solution was poured into the test section and the pump was initialized 

to prime the fluid into all of the test section tubing. A tube for recirculation of the 

fluid was also inserted so that the fluid level would not decrease during the test 

and so that the number of particles in the fluid would remain constant. As the flow 

rates were still relatively slow, this recirculation did not significantly impact the flow 

in the area of interest around the catheter inlet holes.  

After testing for density matching, the resin beads were activated with the 

radionuclide tracer, fluorine-18 (F-18). Approximately 200 of these particles, 

containing a total of around 2 millicuries of radioactivity, were injected via pipette 

into the fluid of the test section. These activated particles were circulated through 

the catheter and back into the test section by the pump, while the scanner acquired 

data about their relative positions in the bore. Twenty consecutive tests of 5 

minutes each were conducted in such a fashion, and the fluid was stirred manually 

after each test to assure that the particles remained continuously buoyant and well 
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mixed in the fluid. The number and length of tests reflected a desire to have as 

many particle “traces” or trajectories recorded as possible, so that any post-test 

analysis would contain statistically significant data. However, due to radioactive 

decay, the particle tracking was no longer effective after the seventh such test; this 

only became clear after post-processing of the acquired data. The declining levels 

of radioactivity can be seen in Figure 3.18, which shows the number of lines of 

response (LORs), proportional to the positron detections by the PET scanner over 

the course of the test. During the first run, there was a problem with data 

acquisition, so the data for this run is missing in this plot. After the fifth test, 

approximately 50 additional particles were injected into the fluid to attempt to 

counteract this decline in activity, a known issue from previous tests. However, this 

attempt did not meaningfully improve the data gathered from subsequent tests.  

With the usable raw data gathered from the tests, a collection of 

approximately 1600 particle traces was constructed using a C++ code to post-

process the crystal readings acquired by the PET scanner. These traces consisted 

x,y,z position data documenting the movements of single particles, sometimes 

heavily fragmented so that a single particle’s trajectory was mapped by several 

“piecewise continuous” traces. This data was further processed by a MATLAB 

code that calculated the velocities along the trace data and averaged these 

velocities within the elements of a grid to form an approximation of the average 

velocities at various locations in the test section fluid domain. The coarser the grid 

used, the more velocities were included in the average velocity calculation for the 

various locations.  

   

Figure 3.18 Plot of the number of lines of response (LORs) per millisecond, 
proportional to the positron detections by the PET scanner, over the course of the test. 
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CHAPTER 4: 

RESULTS AND DISCUSSION 

4.1 Overview 

 
The results of both the computational and experimental tests are presented 

in the following sections. Some of the baseline results of the 2D and 3D CFD model 

can be found in Figure 3.5, in Section 3.2.3. The 3D model in OpenFOAM served 

as the base case for the iterative studies using DAKOTA. The results presented 

from these DAKOTA runs represent the sequence in which optimization was 

achieved. Some of these analyses were achieved on the single Dell workstation 

and a portion were performed on the Darter supercomputer (see Section 3.1.1). 

First, one-at-a-time parameter sensitivity studies are shown, and their 

conclusions discussed. Then, some of the more influential LHS study results are 

discussed, though these are summarized, as they represent thousands of 

individual runs. The subsequent selections for optimization initial points are also 

presented. Finally, the results of two of the local, derivative-free optimization 

methods are shown, and a summary of their “winning” parameters is given. These 

results constitute the best simulated catheter designs for attaining flow rate 

uniformity among the catheter inlet holes. A significant improvement in uniformity 

was achieved compared to currently existing designs. 

Experimental validation of the computational model was demonstrated in 

two parts: a qualitative, visual water and ink study and a quantitative nuclear 

imaging study using PEPT. The results of both tests indicate that in current 

catheter designs featuring uniform hole diameters and spacing, the majority of the 

flow enters through the proximal hole set. This can be seen visually in the water 

and ink demonstration, as most of the injected ink is clearly routed to the holes 

furthest from the catheter tip. It can also be seen in the velocity field plot produced 

by the PEPT test. Though the latter test is performed with a scaled-up catheter 

and fluid domain, it is shown to be a good representation of the flow behavior in an 

unscaled catheter. Additionally, the results of this test, when compared to an 

OpenFOAM model of the scaled parameters, show a remarkably accurate 

reproduction of the experimental data. 

With these results, it is evident that there is significant value in using 

computational fluid dynamics modelling and an iterative framework to optimize the 

design of ventricular catheters. This framework can be used by both researchers 

and commercial shunt manufacturers to improve the fluid performance of existing 

designs, and can be validated by experimental testing of scaled prototypes.  
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4.2 Parameter Study and Optimization Results 
 
4.2.1 Parameter Sensitivity Studies 

 
In order to identify the most critical parameters of interest to be tested for 

design optimization, it was necessary to perform one-at-a-time parameter 

sensitivity studies. In each test, only the parameter of interest was varied while the 

others were held constant. This allowed for each parameter to be tested 

independently of the others, and its effect on the objective function to be isolated 

and analyzed with regard to the magnitude of the effects. Parameters of interest 

(see Figure 3.12) tested using this method were as follows:  

 linear factors for increasing/decreasing inner hole diameters and hole 

spacing, multiplied over each hole segment, with the hole closest to the 

tip (hole 1), serving as the initial value  

 hole diameter and hole spacing between holes 1 and 2 

 distance from the catheter tip to hole 1  

 degree of tapering of the inlet holes 

 catheter wall thickness 

Next, a value called the sensitivity index was calculated, using the following 

formula: SI = 1 – Fmin/Fmax, in which SI is the sensitivity index, Fmax is the maximum 

value of the objective function, and Fmin is the minimum value of the objective 

function.  This type of sensitivity study has been used in past studies [117, 118], 

when comparing parameters that have different ranges and possibly different units, 

as is the case with degree of hole tapering. The results of the studies take the form 

of 2D plots (Figure 4.1), with the parameter of interest as the independent variable 

and the objective function as the dependent variable. The ranges and sensitivity 

indices are shown in Table 4.1. 

 

 

Table 4.1 Ranges and Sensitivity Indices of Parameters of Interest 

Parameter 
Parameter Range Sensitivity 

Index Minimum Maximum 

Linear factor for inner hole diameters 0.825 1.025 0.9538 

Diameter for hole 1 [mm] 0.50 1.00 0.9107 

Linear factor for hole spacing 0.95  1.15 0.4693 

Spacing between holes 1 and 2 [mm] 1.00 2.00 0.8194 

Degree of tapering of the inlet holes [°] 0.00 19.28 0.8335 

Catheter wall thickness [mm] 0.30 0.70 0.5246 

Distance from the catheter tip to hole 1 [mm] 1.00 4.50 0.0003 
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Figure 4.1 Parameter sensitivity study results, showing 2D plots with the parameter of 
interest as the independent variable and the objective function as the dependent 
variable. 
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The sensitivity studies provided crucial guidance for selecting the 

parameters that most affect the objective function and selecting the most influential 

ranges for those variables. The results shown are from analyses performed on a 

catheter design featuring 6 holes, as were the subsequent iterative analyses. 

When similar tests were conducted for 4 and 8 hole designs, the conclusions about 

the parameter of interest were similar. The principle conclusions were as follows: 

 

 The parameter representing the distance from the catheter tip to hole 1 was 

the least influential, with a sensitivity index several scales of magnitude less 

than those of the other parameters. 

 The diameters of the holes are the most influential parameters; both the 

diameter of the first hole and subsequent applications of a linear factor to 

the remaining holes caused significant changes in the objective function. 

 Linear scaling factors of less than 1 for the hole diameters produced 

favorable objective functions, confirming past studies showing that designs 

featuring decreasing hole diameters improve flow rate uniformity. 

 Surprisingly, linear factors between 1 – 1.1 showed the most promise with 

regards to hole spacing, indicating that increasing spaces between the 

holes would produce favorable results. However, the sensitivity index for 

this parameter was relatively low, so its influence was not very substantial. 

 Degree of hole tapering was quite influential, and though this parameter is 

not easily modified in catheter manufacturing, it is apparent that some 

tapering (between 5 - 10 degrees) of the holes is actually beneficial in terms 

of improving flow rate uniformity. 

 Wall thickness was less influential, but lower objective function values were 

observed for thicker catheter walls.  

 

These conclusions provided a basis for excluding certain parameters from 

more detailed investigation. A standard distance from the catheter tip to hole 1 was 

selected as 1.2 mm, since this parameter proved the least influential. Moderately 

influential factors, such as degree of hole tapering and wall thickness were tested 

with only 1 or 2 values. For degree of hole tapering, these were around the 

minimum value of 7.5 degrees. For wall thickness, standard thicknesses of 

extruded silicone tubing of 0.5 mm or 0.6 mm were tested. Since the material 

properties of the catheter (flexibility, structural integrity) depend on this factor, it 

was important not to test significantly thicker or thinner catheters as these may not 

be viable for use in-vivo. With these parameters limited (or set), the remaining 

parameters were carried forward for further testing.  
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4.2.2 Latin Hypercube Sampling (LHS) Results 
 

After performing the sensitivity studies, 4 parameters of interest were 

identified for further testing: linear factor for increasing/decreasing inner hole 

diameters, linear factor for hole spacing, hole 1 diameter, and hole spacing 

between holes 1 and 2. However, the sensitivity studies only provided an initial 

understanding of these parameters and their effects on the objective function. As 

for the linear factors, they only showed limited behavior for certain increasing or 

decreasing hole configuration parameters. In order to avoid the restriction of 

testing linear patterns only, it was necessary to test individual diameter and 

spacing parameters. This greatly increases the number of dimensions of the 

parameter space. Therefore, as explained in Section 3.3.4, a Latin Hypercube 

Sampling method was utilized to explore the parameter space at a general level 

and to detect further trends in the objective function.  

 The advantage of this method was the uniform coverage over the entirety 

of the parameter space (see Figure 3.13). One method to visualize the results of 

such a test is by creating a parallel coordinates plot, as shown in Figure 4.2. The 

coverage of a 5-dimensional space can be seen again here and in the 2D contour 

plots shown in Figure 4.3 on the following page. Both show an LHS run of 1000 

function evaluations on a limited parameter space of only 5 dimensions – in this 

Figure 4.2 Parallel coordinate plot of LHS results on a 5-dimensional parameter space 
of hole diameters 2-6. Top: all 1000 runs. Bottom: 6 most successful runs.  
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Figure 4.3 LHS results shown as 2D colored scatter plots of parameter pairs in a 5-
dimensional parameter space of hole diameters 2-6. 
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case testing the objective function response to changing hole diameters 2-6, while 

hole diameter 1 and the other parameters are held constant. Parallel coordinates 

is a convenient way to visualize the different parameter combinations. This plot 

(Figure 4.2) was created using EDEN, a visual analytics tool for exploring 

quantitative multivariate data developed at Oak Ridge National Laboratory [119]. 

Each line across the 5 parameters represents one parameter combination and its 

resulting objective function. The 5 x 5 2D plot array (Figure 4.3) shows the same 

data as colored scatter plots, so that colors can be used to identify trends in the 

objective function. Both visual techniques were helpful for analyzing the thousands 

of LHS results. The colored scatter (“contour”) plots specifically gave helpful data 

on the response function. For example, combinations with a pairing of low values 

for both diameter 3 and diameter 4 show an area of low objective functions, so this 

is a design consideration that may be favorable to take into account.  

The main disadvantage, which is most apparent in the parallel coordinates 

representation, was a lack of repeated parametric patterns in areas of interest. 

Only 5 out of 1000 runs showed objective function results under 2%, the area of 

interest. The other 995 runs only play a supportive role, but are eventually of 

minimal interest. This disadvantage was a result of the independent nature of the 

runs in LHS method: all parameter sets are established at the outset of the analysis 

and therefore, the method has no ability to focus on any region after discovering 

areas of objective function minimization. This meant that the results had to be 

analyzed “manually” by the user. Nevertheless, the LHS runs allowed for a broader 

view of the parameter space, especially of individual hole diameters and hole 

spacing values. These runs, along with the sensitivity studies, showed “slices” of 

the parameter space and objective function response behavior. By focusing 

parameter ranges and performing subsequent runs, the objective function was 

minimized to 0.67%. The best runs from these pre-optimization explorations 

provided good candidates to use as initial points in the next stage of optimization.   

 
4.2.3 Optimization Results 
 

After completing the pre-optimization exploration of the parameter space, 

as described in the two previous sections, the most promising catheter design 

parameter sets were used as initial points for running an optimization routine using 

the coliny pattern search method (local, derivative-free), as explained in 

Section 3.3.4. The high-fidelity OpenFOAM simulation results of the most 

successful of these optimization analyses is shown in Figure 4.4 on the following 

page, along with the optimized parameter set. Each analysis ran for approximately 

400-500 function evaluations before reaching convergence to a specific set of 
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Figure 4.4 Optimized design results. Top: CFD results from high-fidelity OpenFOAM  
simulation. Mid: Parameter values for optimized design. Bottom: Graph showing relative 
flow rate distribution among inlet holes, with minimized objective function at 0.30%. 
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parameters. The maximum number of function evaluations was set to 1000 and 

was not reached during the analyses, indicating that the optimization algorithm 

indeed identified minimizing sets of parameters.  

This optimization method was found to be satisfactory in the identification 

of minima in the response function, when given a favorable initial point. Derivative-

based methods that were attempted did not prove similarly effective for this 

problem, as they would not converge, even after hundreds of runs. This is perhaps 

a further indication of the non-smooth, perhaps non-continuous nature of the 

objective function in this problem. Nevertheless, as the optimization method 

chosen was a local method, the identification of favorable initial points prior to the 

execution of the optimization analysis was a critical step. The results of the design 

optimization demonstrated a drastic improvement over the “standard” catheter, 

with uniform hole diameters and spacing. The standard design had a computed 

objective function of 14.27% (see Figure 3.5), an obviously flawed flow profile 

compared to the optimized result of 0.30%, which demonstrates nearly complete 

uniformity of flow rates between the inlet holes. 

  

4.3 Experimental Results 
 

The experimental portion of the research was used as a means by which to 

validate the fluid flow behavior in ventricular catheters, which was observed in 

previous studies and throughout the computational simulations in this current 

research.  The designs of interest for this validation were those of most current 

commercial catheters, specifically designs featuring uniform inlet hole diameters 

and uniform hole spacing. These were taken as the standard for this testing for two 

main reasons: 

1. These are the catheter designs that are currently most likely to be 

implanted in individuals requiring a CSF shunt. 

2. The anticipated “skewed” flow rate distribution profile among the inlet 

holes of such a design was the one most likely to be identifiable with the 

flow measurement techniques used. Using a pump at a very slow flow 

rate, if the majority of the flow volume goes through the inlet holes 

furthest from the catheter tip, there is a high chance of being able to 

visually see this pattern and to possibly quantify this majority flow rate. 

The first test was a water and India ink demonstration, which allowed for an 

initial visual confirmation of flow behavior in such a commercial catheter design. 

This was an important confirmation to do before going on to use the more 

quantitative fluid imaging technique PEPT and using highly sophisticated and 

costly testing equipment.   
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4.3.1 Water and India Ink Demonstration 
 

Utilizing the bench test setup described in Section 3.4.1, several water and 

ink demonstrations were conducted. The results in the figures below show a clear 

preference for the ink to flow toward the holes furthest from the tip. Images were 

retrieved at 1 second intervals from video footage of the demonstrations. The holes 

closest to the tip saw little to no visible flow that was stained by the ink. The 

catheter pictured in Figure 4.5 (left) is the 5-hole per row catheter described in 

Section 3.4.1.  

The 5-hole design generally produced the most visually viable results due 

to the larger inlet holes. An 8-hole design was used to provide a comparison and 

can be seen in Figure 4.5 (right). Both demonstrations exhibit the same flow 

behavior, but the smaller and greater number of holes in the 8-hole design 

prevented the flow into the holes from being as visually obvious as that of the 5-

hole design. The 8-hole design divides the total flow rate between 32 holes, 

allowing each hole a smaller portion of the flow, while the 5-hole design only 

divides the flow between 20 holes. 

The high flow rate applied proved necessary for the visualization of the flow. 

Lower pump settings were used initially and were not able to adequately pull the 

ink toward the holes, allowing the ambient convective flow of the water disperse 

the ink before it could reach the inlet holes. Although the high flow rate does not 

mimic physiological flow, it can be representative of flow during a valve opening 

event. Even at such high flow rates, during which the flow regime is no longer 

strictly laminar, the majority of the flow was still confined to the holes farthest from 

the tip. This may indicate that even turbulence in the catheter does not promote 

flow entering holes closest to the tip, though this hypothesis would require further 

testing and validation.  

 

Figure 4.5 Water and India ink demonstrations. Images are taken at 1 second intervals. 
Left: Using a 5-hole per row catheter design. Right: Using a 8-hole per row catheter 
design.  



www.manaraa.com

 

71 
 

4.3.2 Nuclear Imaging Test Using PEPT 
 

From the over 1600 reconstructed particle traces, a MATLAB code 

calculated the velocities along the trace data and averaged these velocities within 

the elements of a grid to form an approximation of the average velocities at various 

locations in the test section fluid domain. As stated previously, the coarser the grid 

used, the more velocities were included in the average velocity calculation for the 

various locations. An example of such a velocity plot may be seen in Figure 4.6 on 

the following page, featuring a 1 mm x 1 mm grid. An outline of the catheter’s 

location is overlaid on the velocity plot. 

Many of the grid areas are only sparsely populated with recorded velocities, 

and even those areas with relatively more densely populated velocities are only 

averaged from the data of no more than about 20-25 traces. Though this 

assessment reduces the statistical robustness of the velocity results, they 

nevertheless form a coherent pattern which can be visually compared to results of 

the CFD model of the experiment (using scaled-up geometry and sucrose solution 

fluid properties). Such a comparison can be seen in Figure 4.7 on page 73. If the 

average inlet face velocities at the set of holes farthest from the catheter tip are 

estimated visually, they would appear to fall in the 0.020 - 0.025 m/s range. 

Similarly, those velocities in the CFD simulation of the experimental model visually 

appear to fall in approximately the same range, and are calculated to have an 

average velocity of 0.01925 m/s.  

This would suggest that the CFD simulations are a comparatively accurate 

source of flow data, when observed in conjunction with experimental flow data. 

Though both models feature rigid catheters and constant flow rates, conditions 

which are not necessarily found in-vivo, they do represent a strong basis by which 

to evaluate the flow profiles of different catheter designs for comparative purposes. 

Moreover, when the scaled-up results are compared to CFD results of an unscaled 

catheter in water, the percent of fluid entering the proximal hole set is again very 

similar. From the experimental results and CFD model of the experiment, the 

relative flow rate percentage at this hole set is calculated to be approximately 57% 

and in the case of the unscaled catheter, it is calculated as 56.06%.  

Therefore, when the objective is to compare relative flow rate profiles of 

different designs, it is again apparent that the CFD simulation is an accurate 

representation of realistic catheter flow. In future catheter engineering, this type of 

imaging can be helpful as various designs can be modeled and prototyped using 

larger, easier to fabricate dimensions by employing advanced techniques such as 

additive manufacturing (3D printing) or basic ones such as the machining used for 

this series of tests. 
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Figure 4.6 Top: Plot of the averaged particle velocity, computed based on a 1 mm x 1 mm 
grid. Catheter shape is overlayed. Bottom: Close-up of proximal hole set region with 
arrows indicating the influx of particles through the inlet holes. 
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Figure 4.7 Top: Comparison of results for the scaled OpenFOAM simulation (left) and  
averaged experimental particle velocity (right). Catheter shape is overlayed. Bottom: 
Comparison of results for scaled and unscaled OpenFOAM simulations. 
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CHAPTER 5: 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this research work, computational and experimental models of flow 

through a ventricular catheter were explored and used to improve catheter design. 

A three-dimensional computational fluid dynamics model was developed and 

served as a basis for an automated simulation framework, which in turn was used 

to identify an optimized catheter design, providing high uniformity of relative flow 

rates among the catheter’s inlet holes. The computational models were run on both 

a single workstation and on a high-performance supercomputer, serving as a 

proof-of-concept that such an optimization framework can be utilized in both 

commercial and research settings. Furthermore, by coupling two open-source 

software toolkits, OpenFOAM and DAKOTA, it was shown that such a framework 

can be built with free, user-supported software, making it a cost-effective means 

of improving engineered medical device designs. 

The results shown in this study provide guidelines for those involved in the 

engineering of ventricular catheters, and they provide at least one optimized 

design suggestion to improve the inlet flow profile of standard 4-hole per row, 

parallel row designs. The CFD model used in this work can easily be adapted for 

other numbers of holes per row, but is limited to parallel-row designs. Staggered 

row designs, which are also popular among the leading catheter manufacturers, 

would require modification of the pre-processing script used to generate the fluid 

domain and mesh for each simulation. However, as a complementary extension of 

this thesis, optimizing the staggered row design would be beneficial and should be 

part of the future efforts of researchers in this field. 

The CFD model itself could also be modified to include features that bring 

it closer to the real in-vivo performance of a catheter draining CSF from a ventricle. 

Most importantly, the steady-state aspect of the simulations used in this thesis do 

not take into account the transient nature of flow induced by the opening of  

normally closed differential pressure valves, which are used in the majority of most 

shunt systems. Unfortunately, statistics about this transient behavior – specifically 

transient flow rates at the time of valve opening – are not described in the literature 

made available to the public by shunt manufacturers. In order to more accurately 

analyze the influence of catheter fluid dynamics on catheter obstruction rates, the 

instantaneous opening flow rates should be experimentally determined for the 

various valve and shunt designs. Valveless shunts, though not as heavily 

marketed, may provide flow with a steady state nature, but these should be 

acquired and tested alongside valved shunts. 
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In terms of the optimization strategy outlined in this thesis, the pre-

optimization methods used to locate favorable initial points for optimization may be 

taken further to locate additional favorable points within the design space and 

possible in other design spaces. These points can serve as a strong basis for a 

more comprehensive multi-start local optimization algorithm. Using such a method, 

a user could hone in on parameter combinations that minimize the objective 

function even further. There also exist additional objective functions that could be 

explored using the framework outlined in this thesis. One important example is the 

minimization of wall shear stress in and around the catheter inlet holes. In one 

study [84], increases in wall shear stress have been correlated to the incidence of 

cellular adhesion on the catheter walls and could therefore also be tied to the 

incidence of obstruction.  

Another possible optimization method, not attempted in this work but 

certainly achievable with the computational resources available, is to create a 

surrogate model of the objective function response curve. A surrogate is 

essentially a best-fit estimation of the response function, and can replace costly 

full evaluations of the objective function. Surrogate methods are supported in 

DAKOTA, so it would not be require a large additional time investment to set up 

such a case and build a surrogate from a few thousand simulated design points. 

Then using the surrogate, the design space could be efficiently explored using 

global optimization methods, or possibly even derivative-based methods. The 

capabilities of high performance computing systems, which were used on a limited 

scale in this study, would be critical for developing and rigorously validating the 

model. However, the surrogate would be so computationally compact that further 

analyses could easily be done on a single workstation.  

Experimental validation of the fluid performance of optimized designs is the 

next critical step toward making such designs a clinical reality. This thesis provided 

a proof-of-concept for using the PEPT imaging technique to produce quantitative 

3D velocity field approximations for scaled-up models of catheter designs. The 

results shown in this research work represent an initial attempt to use this method 

to validate the computational model. However, by perfecting this technique, 

perhaps by using less particles with higher amounts of radioactivity, the number of 

viable particle traces can grow significantly. With a high number of particle traces, 

the statistical characteristics of the estimated velocity field can be improved. 

Additionally, due to the small size of the particles, it may even be possible to image 

an unscaled catheter. This would allow for impressive pre-clinical testing of 

prototypes – the first step toward improving ventricular catheter performance and 

toward the goal of reducing the rates of revision surgeries required for shunted 

patients, eventually improving their quality of life. 
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Appendix A: Calculations 
 
A-1 Reynold’s Scaling Calculation for Nuclear Imaging Test 
 
Table A-1 Reynold’s Scaling Calculation for Nuclear Imaging Test 

 

 Scaled-up Catheter Model 
in Sucrose Solution  

(Experimental) 
 

Original Catheter  
in Water 

(Simulated) 

Inner catheter 
diameter 

𝑑1 = 0.25" ≈ 0.00635 𝑚 𝑑2 = 1.5 𝑚𝑚 = 0.0015 𝑚 

Cross Sectional 
Area 

𝐴1 = 𝜋(0.003175 𝑚)2 

    = 3.167 × 10−5 𝑚2 

𝐴2 = 𝜋(0.00075 𝑚)2 

    = 1.767 × 10−6 𝑚2 

Fluid Kinematic 
Viscosity 

~37.5% mass fraction 
sucrose solution @ 20 °C 
 

𝜌 = 1165
𝑘𝑔

𝑚3 (measured) 

 

𝜇 = 11.8 𝑐𝑝 
    = 0.0118 𝑃𝑎 ∙ 𝑠 
 

𝜈1 =
𝜇

𝜌
= 1.013 × 10−5  

𝑚2

𝑠
 

 

Water @ 37 °C 

𝜈2 = 0.7009 × 10−6  
𝑚2

𝑠
 

 
 
 

Flow Rate 

𝑄1 = 1.27
𝑚𝐿

𝑠
 

    = 1.27 × 10−6  
𝑚3

𝑠
 

(Measured pump flow rate) 

𝑄2 =
𝑅𝑒2 𝜈2𝐴2

𝑑2
 

    = 2.076 × 10−8  
𝑚3

𝑠
 

 

Velocity at catheter 
outlet 

𝑉1 =
𝑄1

𝐴1
= 0.040 𝑚/𝑠 𝑉2 =

𝑄2

𝐴2
= 0.01175 𝑚/𝑠  

Reynold’s  Number 
𝑅𝑒1 =  

𝑄1𝑑1

𝜈1𝐴1
= 25.14 

(laminar) 

 

𝑅𝑒2 = 𝑅𝑒1 =  25.14 
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Appendix B: Computational Scripts 
 
B-1 OpenFOAM Scripts 
 

B-1.1 Initial Pressure Boundary Conditions (0/p) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    object      p; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    inlet 
    { 
        type            fixedValue; 
        value           uniform 0; 
    } 
    outlet 
    { 
        type            zeroGradient; 
    } 
    walls 
    { 
        type            zeroGradient; 
    } 
    outerR 
    { 
        type            zeroGradient; 
    } 
    lend 
    { 
        type            zeroGradient; 
    } 
    hole0 
    { 
        type            zeroGradient; 
    } 
    hole1 
    { 
        type            zeroGradient; 
    } 
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    hole2 
    { 
        type            zeroGradient; 
    } 
    hole3 
    { 
        type            zeroGradient; 
    } 
    . 
    . 
    . 
    hole15 
    { 
        type            zeroGradient; 
    } 
    symXY 
    { 
        type            symmetry; 
    }    
    symYZ 
    { 
        type            symmetry; 
    } 
    front 
    { 
        type  empty; 
    }  
    back 
    { 
        type  empty; 
    }  
    
 
} 
 
// ************************************************************************* // 

 
 

B-1.2 Initial Velocity Boundary Conditions (0/U) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volVectorField; 
    object      U; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
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internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    inlet 
    { 
        type            zeroGradient; 
    } 
    outlet 
    { 
        type            fixedValue; 
        value           uniform (0.0033 0 0); 
    } 
    walls 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    outerR 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    lend 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    hole0 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    hole1 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    hole2 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    hole3 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    . 
    . 
    . 
     
    hole15 
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    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    symXY 
    { 
        type            symmetry; 
    } 
     
    symYZ 
    { 
        type            symmetry; 
    } 
 
    front 
    { 
        type            empty; 
    } 
 
    back 
    { 
        type            empty; 
    } 
 
} 
 
// ************************************************************************* // 
 

B-1.3 RAS Properties (Constant/RASProperties) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "constant"; 
    object      RASProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
RASModel        laminar; 
 
turbulence      off; 
 
printCoeffs     off; 
 
 
// ************************************************************************* // 
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B-1.4 Transport Properties (Constant/transportProperties) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "constant"; 
    object      transportProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
transportModel  Newtonian; 
 
nu              nu [ 0 2 -1 0 0 0 0 ] 7.5e-07; 
 
CrossPowerLawCoeffs 
{ 
    nu0             nu0 [ 0 2 -1 0 0 0 0 ] 1e-06; 
    nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 
    m               m [ 0 0 1 0 0 0 0 ] 1; 
    n               n [ 0 0 0 0 0 0 0 ] 1; 
} 
 
BirdCarreauCoeffs 
{ 
    nu0             nu0 [ 0 2 -1 0 0 0 0 ] 1e-06; 
    nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 
    k               k [ 0 0 1 0 0 0 0 ] 0; 
    n               n [ 0 0 0 0 0 0 0 ] 1; 
} 
 
 
// ************************************************************************* // 
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B-1.5 Numerical Scheme Definitions (system/fvSchemes) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default         steadyState; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
    grad(p)         Gauss linear; 
    grad(U)         Gauss linear; 
} 
 
divSchemes 
{ 
    default         none; 
    div(phi,U)      bounded Gauss upwind; 
    div(phi,k)      bounded Gauss upwind; 
    div(phi,epsilon) bounded Gauss upwind; 
    div(phi,R)      bounded Gauss upwind; 
    div(R)          Gauss linear; 
    div(phi,nuTilda) bounded Gauss upwind; 
    div((nuEff*dev(T(grad(U))))) Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default         none; 
    laplacian(nuEff,U) Gauss linear corrected; 
    laplacian((1|A(U)),p) Gauss linear corrected; 
    laplacian(DkEff,k) Gauss linear corrected; 
    laplacian(DepsilonEff,epsilon) Gauss linear corrected; 
    laplacian(DREff,R) Gauss linear corrected; 
    laplacian(DnuTildaEff,nuTilda) Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
    interpolate(U)  linear; 
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} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 
fluxRequired 
{ 
    default         no; 
    p               ; 
} 
 
 
// ************************************************************************* // 
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B-1.6 Numerical Solution Definitions (system/fvSolution) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
    p 
    { 
        solver          PCG; 
        preconditioner  DIC; 
        tolerance       1e-06; 
        relTol          0.01; 
    } 
    U 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-06; 
        relTol          0.1; 
    } 
} 
SIMPLE 
{ 
    nNonOrthogonalCorrectors 1; 
 
    residualControl 
    { 
        p               1e-6; 
        U               1e-6; 
    } 
}  
relaxationFactors 
{ 
    fields 
    { 
        p               0.7; 
    } 
    equations 
    { 
        U               0.7; 
    } 
} 
 
// ************************************************************************* //  
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B-1.7 Parallel Decomposition Definitions (system/decomposeParDict) 
 
/*-------------------------------- OpenFOAM Header Omitted----------------------------------*\ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      decomposeParDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
numberOfSubdomains 4; 
 
method          scotch; 
 
simpleCoeffs 
{ 
    n               (4 1 1); 
    delta           0.001; 
} 
 
hierarchicalCoeffs 
{ 
    n               (16 1 1); 
    delta           0.001; 
    order           xyz; 
} 
 
manualCoeffs 
{ 
    dataFile        "cellDecomposition"; 
} 
 
metisCoeffs 
{ 
} 
 
// ************************************************************************* //  
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B-2 DAKOTA Scripts 
 

B-2.1 Dakota Input File (dakota.in): Example of a single parameter sensitivity 
study 
 
# ------------------------- 
# DAKOTA Input File 
# ------------------------- 
 
# Usage: 
# dakota.sh -i dakota.in -o run.out > stdout.out 
 
environment 
    tabular_graphics_data 
        tabular_graphics_file = 'dakota_tabular.dat' 
        
method 
  vector_parameter_study 
    final_point = 0.7 
    num_steps = 10 
     
model 
  single 
 
variables 
 continuous_design = 1 
   initial_point    0.3    
   descriptors       'w_th'   
    
interface 
 fork 
   asynchronous 
   evaluation_concurrency = 4 
   analysis_driver = 'simulator_script' 
   parameters_file = 'params.in' 
   results_file    = 'results.out' 
   work_directory directory_tag 
    
responses 
  num_objective_functions = 1 
  no_gradients 
  no_hessians  
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B-2.2 Dakota Input File (dakota.in): Example of Latin Hypercube Sampling 
 
# ------------------------- 
# DAKOTA Input File 
# ------------------------- 
 
# Usage: 
# dakota.sh -i dakota.in -o run.out > stdout.out 
 
environment 
    tabular_graphics_data 
        tabular_graphics_file = 'dakota_tabular.dat' 
 
method 
  sampling 
    sample_type lhs 
    samples = 1000 
 
model 
  single 
  
variables 
  continuous_design = 5   
    cdv_lower_bounds      0.2707 0.2369 0.2073 0.1813 0.1587 
    cdv_upper_bounds      0.3309 0.2895 0.2533 0.2216 0.1939  
    cdv_descriptors       'r_hi02' 'r_hi03' 'r_hi04' 'r_hi05' 'r_hi06'  
 
interface 
 fork 
   asynchronous 
   evaluation_concurrency = 4 
   analysis_driver = 'simulator_script' 
   parameters_file = 'params.in' 
   results_file    = 'results.out' 
   work_directory directory_tag 
 
responses 
  num_objective_functions = 1 
  no_gradients 
  no_hessians 
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B-2.3 Dakota Input File (dakota.in): Example of Local, Derivative-Free 
Optimization 
 
# ------------------------- 
# DAKOTA Input File 
# ------------------------- 
 
# Usage: 
# dakota.sh -i dakota.in -o run.out > stdout.out 
 
environment 
    tabular_graphics_data 
        tabular_graphics_file = 'dakota_tabular.dat' 
 
method 
  max_iterations = 1000 
  max_function_evaluations = 1000 
  coliny_pattern_search 
    solution_accuracy = 1e-4 
    initial_delta = 0.5 
    threshold_delta = 1e-4 
    exploratory_moves basic_pattern 
    contraction_factor = 0.75 
 
model 
  single 
  
variables 
  continuous_design = 5   
    initial_point     0.3008 0.2632 0.2303 0.2015 0.1763 
    lower_bounds      0.2707 0.2369 0.2073 0.1813 0.1587  
    upper_bounds      0.3309 0.2895 0.2533 0.2216 0.1939  
    descriptors       'r_hi02' 'r_hi03' 'r_hi04' 'r_hi05' 'r_hi06' 
  
interface 
 fork 
   asynchronous 
   evaluation_concurrency = 4 
   analysis_driver = 'simulator_script' 
   parameters_file = 'params.in' 
   results_file    = 'results.out' 
   work_directory directory_tag 
 
responses 
  num_objective_functions = 1 
  no_gradients 
  no_hessians 

 
 
  



www.manaraa.com

 

99 
 

B-2.4 Dakota Simulator Script (simulator_script) 
 
# --------------------- 
# Simulator Script 
# --------------------- 
 
# In parent DAKOTA directory, copy casebase folder 
 
pwd 
cp -rf ../casebase/* . 
 
 
# Create and execute preProcessing.py script using the inserted parameters of interest 
 
cp preProcessing.py.template preProcessing.py 
dprepro --left-delimiter='[[' --right-delimiter=']]' $1 preProcessing.py.template preProcessing.py 
python preProcessing.py > preProcessing.log 
 
 
# Execute OpenFOAM mesh and simulation 
 
blockMesh > blockMesh.log 
checkMesh > checkMesh.log 
sh run.sh  
 
# or if not using run.sh, uncomment the following: 
#decomposePar > decomposePar.log 
#mpirun –np 4 topoSet -parallel > toposet.log 
#mpirun –np 4 simpleFoam -parallel > simpleFoam.log 
 
 
# Extract objective function result and pass to DAKOTA results file 
 
python postProcessing.py > postProcessing.log 
tail -n 1 case_summary.dat | cut -c 23-  > tmp.txt 
mv tmp.txt $2 
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